The Annals of Applied Statistics

Spatially explicit models for inference about density in unmarked or partially marked populations

Richard B. Chandler and J. Andrew Royle

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating that neither spatial independence nor individual recognition is needed to estimate population density—rather, spatial dependence can be informative about individual distribution and density.

Article information

Ann. Appl. Stat. Volume 7, Number 2 (2013), 936-954.

First available in Project Euclid: 27 June 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)


Chandler, Richard B.; Royle, J. Andrew. Spatially explicit models for inference about density in unmarked or partially marked populations. Ann. Appl. Stat. 7 (2013), no. 2, 936--954. doi:10.1214/12-AOAS610.

Export citation


  • Bartmann, R. M., White, G. C., Carpenter, L. H. and Garrott, R. A. (1987). Aerial mark-recapture estimates of confined mule deer in pinyon-juniper woodland. The Journal of Wildlife Management 51 41–46.
  • Best, N. G., Ickstadt, K. and Wolpert, R. L. (2000). Spatial Poisson regression for health and exposure data measured at disparate resolutions. J. Amer. Statist. Assoc. 95 1076–1088.
  • Borchers, D. L. and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64 377–385, 664.
  • Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L. and Thomas, L. (2001). Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford Univ. Press, Oxford.
  • Chandler, R. B., Royle, J. A. and King, D. I. (2011). Inference about density and temporary emigration in unmarked populations. Ecology 92 1429–1435.
  • Chandler, R. B. and Royle, J. A. (2013). Supplement to “Spatially explicit models for inference about density in unmarked or partially marked populations.” DOI:10.1214/12-AOAS610SUPP.
  • Dail, D. and Madsen, L. (2011). Models for estimating abundance from repeated counts of an open metapopulation. Biometrics 67 577–587.
  • Dawson, D. K. and Efford, M. G. (2009). Bird population density estimated from acoustic signals. Journal of Applied Ecology 46 1201–1209.
  • DeGraaf, R. M. and Yamasaki, M. (2001). New England Wildlife: Habitat, Natural History, and Distribution. Univ. Press of New England, Hanover, NH.
  • Dice, L. R. (1938). Some census methods for mammals. The Journal of Wildlife Management 2 119–130.
  • Efford, M. (2004). Density estimation in live-trapping studies. Oikos 106 598–610.
  • Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009). Population density estimated from locations of individuals on a passive detector array. Ecology 90 2676–2682.
  • Gardner, B., Royle, J. A. and Wegan, M. T. (2009). Hierarchical models for estimating density from DNA mark-recapture studies. Ecology 90 1106–1115.
  • Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci. 7 457–511.
  • Gopalaswamy, A. M., Royle, J. A., Delampady, M., Nichols, J. D., Karanth, K. U. and Macdonald, D. W. (2012). Density estimation in tiger populations: Combining information for strong inference. Ecology 93 1741–1751.
  • Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ. Ecol. Stat. 5 173–190.
  • Higdon, D. (2002). Space and space–time modeling using process convolutions. In Quantitative Methods for Current Environmental Issues (C. W. Anderson, V. Barnett, P. C. Chatwin and A. H. El-Shaarawi, eds.) 37–56. Springer, London.
  • Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54 187–211.
  • Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, Chichester.
  • Johnson, D. S., Laake, J. L. and Ver Hoef, J. M. (2010). A model-based approach for making ecological inference from distance sampling data. Biometrics 66 310–318.
  • Kelly, M. J., Noss, A. J., Di Bitetti, M. S., Maffei, L., Arispe, R. L., Paviolo, A., De Angelo, C. D. and Di Blanco, Y. E. (2008). Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize. Journal of Mammalogy 89 408–418.
  • Liu, J. S. and Wu, Y. N. (1999). Parameter expansion for data augmentation. J. Amer. Statist. Assoc. 94 1264–1274.
  • McClintock, B. T. and Hoeting, J. A. (2010). Bayesian analysis of abundance for binomial sighting data with unknown number of marked individuals. Environ. Ecol. Stat. 17 317–332.
  • Minta, S. and Mangel, M. (1989). A simple population estimate based on simulation for capture–recapture and capture-resight data. Ecology 70 1738–1751.
  • Moldenhauer, R. R. and Regelski, D. J. (1996). Northern Parula (Parula americana). In The Birds of North America Online (A. Poole, ed.). Cornell Lab of Ornithology, Ithaca, NY.
  • Møller, J. and Waagepetersen, R. P. (2003). Statistical Inference and Simulation for Spatial Point Processes. CRC Press, Boca Raton, FL.
  • O’Connell, A. F., Nichols, J. D. and Karanth, U. K. (2011). Camera Traps in Animal Ecology: Methods and Analyses. Springer, New York.
  • Royle, J. A. (2004a). $N$-mixture models for estimating population size from spatially replicated counts. Biometrics 60 108–115.
  • Royle, J. A. (2004b). Generalized estimators of avian abundance from count survey data. Animal Biodiversity and Conservation 27 375–386.
  • Royle, J. A., Dawson, D. K. and Bates, S. (2004). Modeling abundance effects in distance sampling. Ecology 85 1591–1597.
  • Royle, J. A., Dorazio, R. M. and Link, W. A. (2007). Analysis of multinomial models with unknown index using data augmentation. J. Comput. Graph. Statist. 16 67–85.
  • Royle, J. A. and Dorazio, R. M. (2012). Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. Journal of Ornithology 152 S521–S537.
  • Royle, J. A., Kéry, M. and Guélat, J. (2011). Spatial capture–recapture models for search-encounter data. Methods in Ecology and Evolution 2 602–611.
  • Royle, J. A. and Nichols, J. D. (2003). Estimating abundance from repeated presence-absence data or point counts. Ecology 84 777–790.
  • Royle, J. A. and Young, K. V. (2008). A hierarchical model for spatial capture–recapture data. Ecology 89 2281–2289.
  • Royle, J. A., Karanth, K. U., Gopalaswamy, A. M. and Kumar, N. S. (2009). Bayesian inference in camera trapping studies for a class of spatial capture–recapture models. Ecology 90 3233–3244.
  • Seber, G. A. F. (1973). The Estimation of Animal Abundance and Related Parameters. Griffin, London.
  • Simons, T. R., Pollock, K. H., Wettroth, J. M., Alldredge, M. W., Pacifici, K. and Brewster, J. (2009). Sources of measurement error, misclassification error, and bias in auditory avian point count data. In Modeling Demographic Processes In Marked Populations 3 (D. L. Thomson, E. G. Cooch and M. J. Conroy, eds.) 237–254. Springer, Boston, MA.
  • Sollmann, R., Furtado, M. M., Gardner, B., Hofer, H., Jácomo, A. T. A., Tôrres, N. M. and Silveira, L. (2011). Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biological Conservation 144 1017–1024.
  • Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc. 82 528–540.
  • Thomas, M. (1949). A generalization of Poisson’s binomial limit for use in ecology. Biometrika 36 18–25.
  • Wilson, K. R. and Anderson, D. R. (1985). Evaluation of two density estimators of small mammal population size. Journal of Mammalogy 66 13–21.
  • Wolpert, R. L. and Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics. Biometrika 85 251–267.

Supplemental materials

  • Supplementary material: Full conditional distributions, R code, and history plots. Supplement A1 is a description of the full conditional distributions. Supplement A2 includes R code for implementing the MCMC algorithms and simulating data. It also contains the northern parula data set and a description of the method used to obtain the informative prior used in the analysis of the Parula data. Supplement A3 is a panel of history plots for the Markov chains from the northern parula analysis.