The Annals of Applied Statistics

State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing

Christopher J. Long, Patrick L. Purdon, Simona Temereanca, Neil U. Desai, Matti S. Hämäläinen, and Emery N. Brown

Full-text: Open access


Determining the magnitude and location of neural sources within the brain that are responsible for generating magnetoencephalography (MEG) signals measured on the surface of the head is a challenging problem in functional neuroimaging. The number of potential sources within the brain exceeds by an order of magnitude the number of recording sites. As a consequence, the estimates for the magnitude and location of the neural sources will be ill-conditioned because of the underdetermined nature of the problem. One well-known technique designed to address this imbalance is the minimum norm estimator (MNE). This approach imposes an L2 regularization constraint that serves to stabilize and condition the source parameter estimates. However, these classes of regularizer are static in time and do not consider the temporal constraints inherent to the biophysics of the MEG experiment. In this paper we propose a dynamic state-space model that accounts for both spatial and temporal correlations within and across candidate intracortical sources. In our model, the observation model is derived from the steady-state solution to Maxwell’s equations while the latent model representing neural dynamics is given by a random walk process. We show that the Kalman filter (KF) and the Kalman smoother [also known as the fixed-interval smoother (FIS)] may be used to solve the ensuing high-dimensional state-estimation problem. Using a well-known relationship between Bayesian estimation and Kalman filtering, we show that the MNE estimates carry a significant zero bias. Calculating these high-dimensional state estimates is a computationally challenging task that requires High Performance Computing (HPC) resources. To this end, we employ the NSF Teragrid Supercomputing Network to compute the source estimates. We demonstrate improvement in performance of the state-space algorithm relative to MNE in analyses of simulated and actual somatosensory MEG experiments. Our findings establish the benefits of high-dimensional state-space modeling as an effective means to solve the MEG source localization problem.

Article information

Ann. Appl. Stat. Volume 5, Number 2B (2011), 1207-1228.

First available in Project Euclid: 13 July 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Long, Christopher J.; Purdon, Patrick L.; Temereanca, Simona; Desai, Neil U.; Hämäläinen, Matti S.; Brown, Emery N. State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing. Ann. Appl. Stat. 5 (2011), no. 2B, 1207--1228. doi:10.1214/11-AOAS483.

Export citation


  • Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. C. (1997). ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA.
  • Dale, A. M., Fischl, B. and Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9 179–194.
  • Daunizeau, J. and Friston, K. J. (2007). A mesostate-space model for EEG and MEG. NeuroImage 38 67–81.
  • Farrell, B. F. and Ioannou, P. J. (2001). State estimation using a reduced order Kalman filter. J. Atmospheric Sci. 58 3666–3680.
  • Freeman, W., Ahlfors, S. and Menon, V. (2009). Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition. Int. J. Psychophysiol. 73 43–52.
  • Friston, K. J., Harrison, L., Daunizeau, J., Kiebel, S., Phillips, C., Trujillo-Barreto, N., Henson, R., Flandin, G. and Mattout, J. (2008). Multiple sparse priors for the M/EEG inverse problem. NeuroImage 39 1104–1120.
  • Fukumori, I. and Malanotte-Rizzoli, P. (1995). An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf stream model. J. Geophys. Res. 100 6777–6793.
  • Fukumori, I., Benvensite, J., Wunsch, C. and Haid-vogel, B. D. (1993). Assimilation of sea surface topography into an ocean circulation model using a steady-state smoother. J. Phys. Oceanogr. 23 2162–2181.
  • Galka, A., Yamashita, O. Ozaki, T. et al. (2004). A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. NeuroImage 23 435–453.
  • Hämäläinen, M. S. and Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: Minimum norm estimates. Med. Biol. Eng. Comput. 32 35–42.
  • Hämäläinen, M. S. and Sarvas, J. (1989). Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36 165–171.
  • Hämäläinen, M. S., Hari, R., Ilmoniemi, R. J., Knuutila, J. and Lounasmaa, O. V. (1993). Magnetoencephalography—Theory, instrumentation, and application to noninvasive studies of the working human brain. Rev. Modern Phys. 65 413–497.
  • Kay, S. (1993). Fundamentals of Statistical Signal Processing, Vol. I—Estimation Theory. Prentice Hall, Upper Saddle River, NJ.
  • Kitagawa, G. and Gersch, W. (1996). Smoothness Priors Analysis of Time Series. Lecture Notes in Statistics 116. Springer, New York.
  • Krim, H. and Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine 13 67–94.
  • Lamus, C., Long, C. J., Hamalainen, M. S., Brown, E. N. and Purdon, P. L. (2007). Parameter estimation and dynamic source localization for the magnetoencephalography (MEG) inverse problem. IEEE International Symposium on Biomedical Imaging, Washington, DC, April 12–15, 2007.
  • Liljeström, M., Kujala, J., Jensen, O. and Salmelin, R. (2005). Neuromagnetic localization of rhythmic activity in the human brain: A comparison of three methods. NeuroImage 25 734–745.
  • Lounasmaa, O., Hämäläinen, M., Hari, R. and Salmelin, R. (1995). Information processing in the human brain: Magnetoencephalographic approach. Proc. Natl. Acad. Sci. USA 93 8809–8815.
  • Mattout, J., Phillips, C., Penny, W. D., Rugg, M. D. and Friston, K. J. (2006). MEG source localization under multiple constraints: An extended Bayesian framework. NeuroImage 30 753–768.
  • Mosher, J. C. and Leahy, R. M. (1998). Recursive MUSIC: A framework for EEG and MEG source localization. IEEE Trans. Biomed. Eng. 45 1342–1354.
  • Mosher, J. C., Lewis, P. S. and Leahy, R. M. (1992). Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans. Biomed. Eng. 39 541–557.
  • Nunez, P. L. (1995). Neocortical Dynamics and Human EEG Rhythms. Oxford Univ. Press, New York.
  • Ou, W., Hämäläinen, M. S. and Golland, P. (2009). A distributed spatio-temporal EEG/MEG inverse solver. NeuroImage 44 932–946.
  • Pascual-Marqui, R. D., Michel, C. M. and Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18 49–65.
  • Phillips, C., Mattout, J., Rugg, M. D., Maquet, P. and Friston, K. J. (2005). An empirical Bayesian solution to the source reconstruction problem in EEG. NeuroImage 24 997–1011.
  • Salmelin, R. and Hari, R. (1994). Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalogr. Clin. Neurophysiol. 91 237–248.
  • Salmelin, R., Forss, N., Knuutila, J. and Hari, R. (2005). Bilateral activation of the human somatomotor cortex by distal hand movements. Electroenceph. Clin. Neurophysiol. 95 444–452.
  • Uutela, K., Hämäläinen, M. and Salmelin, R. (1998). Global optimization in the localization of neuromagnetic sources. IEEE Trans. Biomed. Eng. 45 716–723.
  • Uutela K. Hämäläinen, M. and Somersalo, S. (1999). Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10 173–180.
  • Van Veen, B. D., van Dronglen, W., Yuchtman, M. and Suzuki, A. (1997). Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44 867–880.
  • Wipf, D. P., Owen, J. P., Attias, H. T., Sekihara, K. and Nagarajan, S. S. (2010). Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG. NeuroImage 49 641–655.
  • Yamashita, O., Galka, A., Ozaki, T., Biscay, R. and Valdes-Sosa, P. (2004). Recursive penalized least squares solution for dynamical inverse problems of EEG generation. Hum. Brain Mapp. 21 221–235.
  • Zumer, J. M., Attias, H. T., Sekihara, K. and Nagarajan, S. S. (2007). A probabilistic algorithm form integrating source localization and noise suppression for MEG and EEG data. NeuroImage 37 102–115.
  • Zumer, J. M., Attias, H. T., Sekihara, K. and Nagarajan, S. S. (2008). Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data. NeuroImage 41 924–940.