The Annals of Applied Statistics

Using epidemic prevalence data to jointly estimate reproduction and removal

Jan van den Broek and Hiroshi Nishiura

Full-text: Open access

Abstract

This study proposes a nonhomogeneous birth–death model which captures the dynamics of a directly transmitted infectious disease. Our model accounts for an important aspect of observed epidemic data in which only symptomatic infecteds are observed. The nonhomogeneous birth–death process depends on survival distributions of reproduction and removal, which jointly yield an estimate of the effective reproduction number R(t) as a function of epidemic time. We employ the Burr distribution family for the survival functions and, as special cases, proportional rate and accelerated event-time models are also employed for the parameter estimation procedure. As an example, our model is applied to an outbreak of avian influenza (H7N7) in the Netherlands, 2003, confirming that the conditional estimate of R(t) declined below unity for the first time on day 23 since the detection of the index case.

Article information

Source
Ann. Appl. Stat. Volume 3, Number 4 (2009), 1505-1520.

Dates
First available: 1 March 2010

Permanent link to this document
http://projecteuclid.org/euclid.aoas/1267453950

Digital Object Identifier
doi:10.1214/09-AOAS270

Zentralblatt MATH identifier
05696888

Mathematical Reviews number (MathSciNet)
MR2752144

Citation

van den Broek, Jan; Nishiura, Hiroshi. Using epidemic prevalence data to jointly estimate reproduction and removal. The Annals of Applied Statistics 3 (2009), no. 4, 1505--1520. doi:10.1214/09-AOAS270. http://projecteuclid.org/euclid.aoas/1267453950.


Export citation

References

  • Andersson, H. and Britton, T. (2000). Stochastic Epidemic Models and Their Statistical Analysis. Springer, New York.
  • Bailey, N. T. J. (1964). The Elements of Stochastic Process. Wiley, New York.
  • Becker, N. G. (1989). Analysis of Infectious Disease Data. Chapman and Hall, New York.
  • Becker, N. G. and Yip, P. (1989). Analysis of variations in an infection rate. Australian Journal of Statistics 31 42–52.
  • Consul, P. C. and Famoye, F. (2006). Lagrange Probability Distributions. Birkhäuser, Boston.
  • Diekman, O. and Heesterbeek, J. A. P. (2000). Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation. Wiley, Chichester.
  • Johnsom, N. L., Kemp, A. W. and Kotz, S. (2005). Univariate Discrete Distributions, 3rd ed. Wiley, Hoboken, NJ.
  • Kendall, D. G. (1948). On the generalized “birth-and-death” process. Ann. Math. Statist. 19 1–15.
  • Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences. Wiley, Hoboken, NJ.
  • Lindsey, J. K. (2001). Nonlinear Models in Medical Statistics. Oxford Univ. Press.
  • Nishiura, H. and Chowell, G. (2009). The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In: Mathematical and Statistical Estimation Approaches in Epidemiology (G. Chowell, J. M. Hyman, L. M. A. Bettencourt and C. Castillo-Chavez, eds.) 103–121. Springer, New York.
  • R Develpment Core Team (2008). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.R-project.org.
  • Shao, Q. (2004). Notes on the maximum likelihood estimation for the three parameter Burr XII distribution. Comput. Statist. Data Anal. 45 675–687.
  • Stegeman, J. A., Bouma, A., Elbers, A. R. W., Van Boven, M., De Jong, M. C. M., Nodelijk, G., De Klerk, F. and Koch, G. (2003). Avian influenza a virus (H7N7) epidemic in The Netherlands in 2003: Course of the epidemic and effectiveness of control measures. The Journal of Infectious Diseases 190 2088–2095.
  • van Den Broek, J. and Heesterbeek, J. A. P. (2007). Nonhomogeneous birth and death models for epidemic outbreak data. Biostatistics 8 453–467.