The Annals of Applied Statistics

Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins

S. C. Kou

Full-text: Open access

Abstract

Advances in nanotechnology have allowed scientists to study biological processes on an unprecedented nanoscale molecule-by-molecule basis, opening the door to addressing many important biological problems. A phenomenon observed in recent nanoscale single-molecule biophysics experiments is subdiffusion, which largely departs from the classical Brownian diffusion theory. In this paper, by incorporating fractional Gaussian noise into the generalized Langevin equation, we formulate a model to describe subdiffusion. We conduct a detailed analysis of the model, including (i) a spectral analysis of the stochastic integro-differential equations introduced in the model and (ii) a microscopic derivation of the model from a system of interacting particles. In addition to its analytical tractability and clear physical underpinning, the model is capable of explaining data collected in fluorescence studies on single protein molecules. Excellent agreement between the model prediction and the single-molecule experimental data is seen.

Article information

Source
Ann. Appl. Stat. Volume 2, Number 2 (2008), 501-535.

Dates
First available: 3 July 2008

Permanent link to this document
http://projecteuclid.org/euclid.aoas/1215118526

Digital Object Identifier
doi:10.1214/07-AOAS149

Zentralblatt MATH identifier
05591286

Mathematical Reviews number (MathSciNet)
MR2524344

Citation

Kou, S. C. Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins. The Annals of Applied Statistics 2 (2008), no. 2, 501--535. doi:10.1214/07-AOAS149. http://projecteuclid.org/euclid.aoas/1215118526.


Export citation

References

  • Adler, R., Feldman, R. and Taqqu, M. (1998)., A Practical Guide to Heavytails: Statistical Techniques for Analyzing Heavy-Tailed Distributions. Birkhäuser, Boston.
  • Alòs, E., Mazet, O. and Nualart, D. (2000). Stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2., Stochastic Process. Appl. 86 121–139.
  • Asbury, C., Fehr, A. and Block, S. M. (2003). Kinesin moves by an asymmetric hand-over-hand mechanism., Science 302 2130–2134.
  • Bouchaud, J. and Georges, A. (1990). Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications., Phys. Rep. 195 127–293.
  • Carmona, P. and Coutin, L. (2000). Intégrale stochastique pour le mouvement brownien fractionnaire., C. R. Acad. Sci. Paris 330 231–236.
  • Champeney, D. C. (1987)., A Handbook of Fourier Theorems. Cambridge Univ. Press.
  • Chandler, D. (1987)., Introduction to Modern Statistical Mechanics. Oxford Univ. Press, New York.
  • Corben, H. C. and Stehle, P. (1995)., Classical Mechanics. Dover Publications, New York.
  • Crovella, M. and Bestavros, A. (1996). Self-similarity in world wide web traffic: Evidence and possible causes., Performance Evaluation Review 24 160–169.
  • Dai, W. and Heyde, C. C. (1996). Ito’s formula with respect to fractional Brownian motion and its application., J. Appl. Math. Stochast. Anal. 9 439–448.
  • Doetsch, G. (1974)., Introduction to the Theory and Application of the Laplace Transformation. Springer, New York.
  • Duncan, T. E., Hu, Y. and Pasik-Duncan, B. (2000). Stochastic calculus for fractional Brownian motion I. Theory., SIAM J. Control Optim. 38 582–612.
  • Embrechts, P. and Maejima, M. (2002)., Selfsimilar Processes. Princeton Univ. Press.
  • English, B., Min, W., van Oijen, A. M., Lee, K. T., Luo, G., Sun, H., Cherayil, B. J., Kou, S. C. and Xie, X. S. (2006). Ever-fluctuating single enzyme molecules: Michaelis–Menten equation revisited., Nature Chemical Biology 2 87–94.
  • Erdélyi, A. et al. (1953)., High Transcendental Functions 3. McGraw-Hill, New York.
  • Glynn, P. and Zeevi, A. (2000). On the maximum workload of a queue fed by fractional Brownian motion., Ann. Appl. Probab. 10 1084–1099.
  • Gray, H. and Winkler, J. (1996). Electron transfer in proteins., Annu. Rev. Biochem. 65 537–561.
  • Gripenberg, G. and Norros, I. (1996). On the prediction of fractional Brownian motion., J. Appl. Probab. 33 400–410.
  • Heath, D., Resnick, S. and Samorodnitsky, G. (1997). Patterns of buffer overflow in a class of queues with long memory in the input stream., Ann. Appl. Probab. 7 1021–1057.
  • Heyde, C. C. (1999). A risky asset model with strong dependence through fractal activity time., J. Appl. Probab. 36 1234–1239.
  • Hill, T. (1986)., An Introduction to Statistical Thermodynamics. Dover, New York.
  • Karlin, S. and Taylor, H. (1981)., A Second Course in Stochastic Processes. Academic Press, New York.
  • Klafter, J., Shlesinger, M. and Zumofen, G. (1996). Beyond Brownian motion., Physics Today 49 33–39.
  • Konstantopoulos, T. and Lin, S. J. (1996). Fractional Brownian approximations of queueing networks., Stochastic Networks. Lecture Notes in Statist. 117 257–273. Springer, New York.
  • Kou, S. C., Cherayil, B., Min, W., English, B. and Xie, X. S. (2005). Single-molecule Michaelis-Menten equations., J. Phys. Chem. B 109 19068–19081.
  • Kou, S. C. and Xie, X. S. (2004). Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule., Phys. Rev. Lett. 93 180603(1)–180603(4).
  • Kou, S. C., Xie, X. S. and Liu, J. S. (2005). Bayesian analysis of single-molecule experimental data (with discussion)., J. Roy. Statist. Soc. Ser. C 54 469–506.
  • Kou, S. C. (2007). Stochastic networks in nanoscale biophysics: Modeling enzymatic reaction of a single protein., J. Amer. Statist. Assoc. To appear.
  • Kupferman, R. (2004). Fractional kinetics in Kac–Zwanzig heat bath models., J. Statist. Phys. 114 291–326.
  • Leland, W. E., Taqqu, M. S., Willinger, W. and Wilson, D. V. (1994). On the self-similar nature of Ethernet traffic (Extended Version)., IEEE/ACM Trans. Networking 2 1–15.
  • Lin, S. J. (1995). Stochastic analysis of fractional Brownian motions., Stochast. Stochast. Rep. 55 121–140.
  • Lu, H. P., Xun, L. and Xie, X. S. (1998). Single-molecule enzymatic dynamics., Science 282 1877–1882.
  • Mandelbrot, B. (1997)., Fractals and Scaling in Finance. Springer, New York.
  • Mandelbrot, B. and Van Ness, J. (1968). Fractional Brownian motions, fractional noises and applications., SIAM Rev. 10 422–437.
  • Mikosch, T. and Norvaisa, R. (2000). Stochastic integral equations without probability., Bernoulli 6 401–434.
  • Mikosch, T., Resnick, S., Rootzén, H. and Stegeman, A. (2002). Is network traffic approximated by stable Lévy motion or fractional Brownian motion?, Ann. Appl. Probab. 12 23–68.
  • Min, W., English, B., Luo, G., Cherayil, B., Kou, S. C. and Xie, X. S. (2005). Fluctuating enzymes: Lessons from single-molecule studies., Accounts of Chemical Research 38 923–931.
  • Min, W., Luo, G., Cherayil, B., Kou, S. C. and Xie, X. S. (2005). Observation of a power law memory kernel for fluctuations within a single protein molecule., Phys. Rev. Lett. 94 198302(1)–198302(4).
  • Moerner, W. (2002). A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics., J. Phys. Chem. B 106 910–927.
  • Moser, C., Keske, J., Warncke, K., Farid, R. and Dutton, P. (1992). Nature of biological electron transfer., Nature 355 796–802.
  • Mukamel, S. (1995)., Principle of Nonlinear Optical Spectroscopy. Oxford Univ. Press, New York.
  • Nie, S. and Zare, R. (1997). Optical detection of single molecules., Ann. Rev. Biophys. Biomol. Struct. 26 567–596.
  • Nualart, D. (2006)., The Malliavin Calculus and Related Topics (Probability and Its Applications). Springer, New York.
  • Pipiras, V. and Taqqu, M. S. (2000). Integration questions related to fractional Brownian motion., Probab. Theory Related Fields 118 251–291.
  • Pipiras, V. and Taqqu, M. S. (2001). Are classes of deterministic integrands for fractional Brownian motion on an interval complete?, Bernoulli 7 873–897.
  • Reif, F. (1965)., Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York.
  • Risken, H. (1989)., The Fokker–Planck Equation: Methods of Solution and Applications. Springer, Berlin.
  • Rogers, L. C. G. (1997). Arbitrage with fractional Brownian motion., Math. Finance 7 95–105.
  • Samorodnitsky, G. and Taqqu, M. (1994)., Stable Non-Gaussian Random Processes. Chapman and Hall, New York.
  • Shiryaev, A. N. (1998). On arbitrage and replication for fractal models. Research Report No. 2, 1998, MaPhySto, Univ., Aarhus.
  • Sokolov, I., Klafter, J. and Blumen, A. (2002). Fractional kinetics., Physics Today 55 48–54.
  • Tamarat, P., Maali, A., Lounis, B. and Orrit, M. (2000). Ten years of single-molecule spectroscopy., J. Phys. Chem. A 104 1–16.
  • Taqqu, M. S. (1986). Sojourn in an elliptical domain., Stochastic Process. Appl. 21 319–326.
  • Van Kampen, N. G. (2001)., Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam.
  • Wang, K. G. and Tokuyama, M. (1999). Nonequilibrium statistical description of anomalous diffusion., Phys. A 265 341–351.
  • Weiss, S. (2000). Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy., Nature Struct. Biol. 7 724–729.
  • Whitt, W. (2002)., Stochastic-Process Limits. Springer, New York.
  • Xie, X. S. and Lu, H. P. (1999). Single-molecule enzymology., J. Bio. Chem. 274 15967–15970.
  • Xie, X. S. and Trautman, J. K. (1998). Optical studies of single molecules at room temperature., Ann. Rev. Phys. Chem. 49 441–480.
  • Yang, H., Luo, G., Karnchanaphanurach, P., Louise, T.-M., Rech, I., Cova, S., Xun, L. and Xie, X. S. (2003). Protein conformational dynamics probed by single-molecule electron transfer., Science 302 262–266.
  • Zhuang, X., Kim, H., Pereira, M., Babcock, H., Walter, N. and Chu, S. (2002). Correlating structural dynamics and function in single ribozyme molecules., Science 296 1473–1476.
  • Zwanzig, R. (2001)., Nonequilibrium Statistical Mechanics. Oxford Univ. Press, New York.