The Annals of Applied Statistics

Interpretation of interaction: A review

Amy Berrington de González and D. R. Cox

Full-text: Open access

Abstract

Several different types of statistical interaction are defined and distinguished, primarily on the basis of the nature of the factors defining the interaction. Illustrative examples, mostly epidemiological, are given. The emphasis is primarily on interpretation rather than on methods for detecting interactions.

Article information

Source
Ann. Appl. Stat. Volume 1, Number 2 (2007), 371-385.

Dates
First available in Project Euclid: 30 November 2007

Permanent link to this document
http://projecteuclid.org/euclid.aoas/1196438023

Digital Object Identifier
doi:10.1214/07-AOAS124

Mathematical Reviews number (MathSciNet)
MR2415740

Zentralblatt MATH identifier
05226938

Keywords
Interaction effect modification types of factor transformations qualitative interaction effect reversal epistasis

Citation

Berrington de González, Amy; Cox, D. R. Interpretation of interaction: A review. Ann. Appl. Stat. 1 (2007), no. 2, 371--385. doi:10.1214/07-AOAS124. http://projecteuclid.org/euclid.aoas/1196438023.


Export citation

References

  • Agresti, A. (1990). Categorical Data Analysis. Wiley, New York.
  • Ascherio, A., Weisskopf, M. G., O'Reilly, E. J., McCullough, M. L., Calle, E. E., Rodriguez, C. and Thun, M. J. (2004). Coffee consumption, gender, and Parkinson's disease mortality in the Cancer Prevention Study II cohort: The mortality effects of estrogen. Am. J. Epidemiology 160 977–984.
  • Azzalini, A. and Cox, D. R. (1984). Two new tests associated with analysis of variance. J. Roy. Statist. Soc. Ser. B 46 335–343.
  • Bartlett, M. S. (1935). Contingency table interactions. J. Roy. Statist. Soc. Ser. B 2 248–252.
  • Beral, V., Bull, D., Reeves G. and Million Women Study Collaborators (2005). Endometrial cancer and hormone-replacement therapy in the Million Women Study. Lancet 365 1543–1551.
  • Berkson, J. (1958). Smoking and lung cancer: Observations on two recent reports. J. Amer. Statist. Assoc. 53 28–38.
  • Blot, W. J. and Day, N. E. (1979). Synergism and interaction: Are they equivalent? Am. J. Epidemiology 110 99–100.
  • Box, G. E. P. and Draper, N. R. (2007). Response Surfaces, Mixtures and Ridge Analyses, 2nd ed. Wiley, New York.
  • Breslow, N. E. and Day, N. E. (1980). Statistical Methods in Cancer Research. 1. The Analysis of Case-Control Studies. IARC Scientific Publications, Lyon, France.
  • Cardon, L. R. and Palmer, L. J. (2003). Population stratification and spurious allelic association. Lancet 361 598–604.
  • Cox, D. R. (1984). Interaction. Internat. Statist. Rev. 52 1–31.
  • Cox, D. R. (2003). Conditional and marginal association for binary random variables. Biometrika 96 982–984.
  • Cox, D. R. and Wermuth, N. (1994). Tests of linearity, multivariate normality and the adequacy of linear scores. Appl. Statist. 43 347–355.
  • Cox, D. R. and Wermuth, N. (1996). Multivariate Dependencies. Chapman and Hall, London.
  • Cronbach, L. J. and Snow, R. E. (1981). Aptitudes and Instructional Methods: A Handbook for Research on Interactions. Irvington Publishers Inc, New York.
  • Darroch, J. N. (1974). Multiplicative and additive interaction in contingency tables. Biometrika 61 207–214.
  • Duijts, S. F. A., Zeegers, M. P. A. and Borne, B. Vd. (2003). The association between stressful life events and breast cancer risk: A meta-analysis. Internat. J. Cancer 107 1023–1029.
  • Goodman, L. A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models, and asymmetry models for contingency tables with or without missing entries. Ann. Statist. 13 10–69.
  • Gustavsson, P., Nyberg, F., Pershagen, G., Scheele, P., Jakobsson, R. and Plato, N. (2002). Low dose exposure to asbestos and lung cancer: Dose-response relations and interaction with smoking in a population-based case-referent study in Stockholm, Sweden. Am. J. Epidemiology 155 1016–1022.
  • Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London.
  • Lancaster, H. O. (1969). The Chi-Squared Distribution. Wiley, New York.
  • Lazarsfeld, P. F. and Henry, N. W. (1968). Latent Structure Analysis. Houghton-Mifflin, Boston.
  • Peto, R. (1982). Statistical aspects of cancer trials. In Treatment of Cancer (K. E. Halnan, ed.) 867–871. Chapman and Hall, London.
  • Rothman, K. J., Greenland, S. and Walker, A. M. (1980). Concepts of interaction. Am. J. Epidemiology 112 467–470.
  • Siemiatycki, J. and Thomas, D. C. (1981). Biological models and statistical interactions: An example from multistage carcinogenesis. Internat. J. Epidemiology 10 383–387.
  • Tukey, J. W. (1949). One degree of freedom for non-additivity. Biometrics 5 233–242.
  • Yates, F. (1948). The analysis of contingency tables with groupings based on quantitative characters. Biometrika 35 176–181.
  • Yates, F. and Cochran, W. G. (1938). The analysis of groups of experiments. J. Agric. Sci. 28 556–580.
  • Yule, G. U. (1903). Notes on the theory of attributes in statistics. Biometrika 2 121–134.
  • Znaor, A. A., Brennan, P., Gajalakshmi, V., Mathew, A., Shanta, V., Varghese, C. and Boffeta, P. (2003). Independent and combined effects of tobacco smoking, chewing and alcohol drinking on the risk of oral, pharyngeal and esophageal cancer in Indian men. Internat. J. Cancer 105 681–686.