Abstract
We study competing first passage percolation on graphs generated by the configuration model. At time 0, vertex 1 and vertex 2 are infected with the type 1 and the type 2 infection, respectively, and an uninfected vertex then becomes type 1 (2) infected at rate $\lambda_{1}$ ($\lambda_{2}$) times the number of edges connecting it to a type 1 (2) infected neighbor. Our main result is that, if the degree distribution is a power-law with exponent $\tau\in(2,3)$, then as the number of vertices tends to infinity and with high probability, one of the infection types will occupy all but a finite number of vertices. Furthermore, which one of the infections wins is random and both infections have a positive probability of winning regardless of the values of $\lambda_{1}$ and $\lambda_{2}$. The picture is similar with multiple starting points for the infections.
Citation
Maria Deijfen. Remco van der Hofstad. "The winner takes it all." Ann. Appl. Probab. 26 (4) 2419 - 2453, August 2016. https://doi.org/10.1214/15-AAP1151
Information