Open Access
June 2015 A particle system with cooperative branching and coalescence
Anja Sturm, Jan M. Swart
Ann. Appl. Probab. 25(3): 1616-1649 (June 2015). DOI: 10.1214/14-AAP1032
Abstract

In this paper, we introduce a one-dimensional model of particles performing independent random walks, where only pairs of particles can produce offspring (“cooperative branching”), and particles that land on an occupied site merge with the particle present on that site (“coalescence”). We show that the system undergoes a phase transition as the branching rate is increased. For small branching rates, the upper invariant law is trivial, and the process started with finitely many particles a.s. ends up with a single particle. Both statements are not true for high branching rates. An interesting feature of the process is that the spectral gap is zero even for low branching rates. Indeed, if the branching rate is small enough, then we show that for the process started in the fully occupied state, the particle density decays as one over the square root of time, and the same is true for the decay of the probability that the process still has more than one particle at a later time if it started with two particles.

References

1.

[1] Athreya, S. R. and Swart, J. M. (2005). Branching–coalescing particle systems. Probab. Theory Related Fields 131 376–414. MR2123250 10.1007/s00440-004-0377-4[1] Athreya, S. R. and Swart, J. M. (2005). Branching–coalescing particle systems. Probab. Theory Related Fields 131 376–414. MR2123250 10.1007/s00440-004-0377-4

2.

[2] Bezuidenhout, C. and Gray, L. (1994). Critical attractive spin systems. Ann. Probab. 22 1160–1194. MR1303641 10.1214/aop/1176988599 euclid.aop/1176988599 [2] Bezuidenhout, C. and Gray, L. (1994). Critical attractive spin systems. Ann. Probab. 22 1160–1194. MR1303641 10.1214/aop/1176988599 euclid.aop/1176988599

3.

[3] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462–1482. MR1071804 10.1214/aop/1176990627 euclid.aop/1176990627 [3] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462–1482. MR1071804 10.1214/aop/1176990627 euclid.aop/1176990627

4.

[4] Bezuidenhout, C. and Grimmett, G. (1991). Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19 984–1009. MR1112404 10.1214/aop/1176990332 euclid.aop/1176990332 [4] Bezuidenhout, C. and Grimmett, G. (1991). Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19 984–1009. MR1112404 10.1214/aop/1176990332 euclid.aop/1176990332

5.

[5] Billingsley, P. (1986). Probability and Measure, 2nd ed. Wiley, New York. MR830424[5] Billingsley, P. (1986). Probability and Measure, 2nd ed. Wiley, New York. MR830424

6.

[6] Blath, J. and Kurt, N. (2011). Survival and extinction of caring double-branching annihilating random walk. Electron. Commun. Probab. 16 271–282. MR2802043 10.1214/ECP.v16-1631[6] Blath, J. and Kurt, N. (2011). Survival and extinction of caring double-branching annihilating random walk. Electron. Commun. Probab. 16 271–282. MR2802043 10.1214/ECP.v16-1631

7.

[7] Bramson, M. and Griffeath, D. (1980). Asymptotics for interacting particle systems on ${Z}^{d}$. Z. Wahrsch. Verw. Gebiete 53 183–196. MR580912[7] Bramson, M. and Griffeath, D. (1980). Asymptotics for interacting particle systems on ${Z}^{d}$. Z. Wahrsch. Verw. Gebiete 53 183–196. MR580912

8.

[8] Chung, K. L. (2001). A Course in Probability Theory, 3rd ed. Academic Press, San Diego, CA. MR1796326[8] Chung, K. L. (2001). A Course in Probability Theory, 3rd ed. Academic Press, San Diego, CA. MR1796326

9.

[9] Durrett, R. (1980). On the growth of one-dimensional contact processes. Ann. Probab. 8 890–907. MR586774 10.1214/aop/1176994619 euclid.aop/1176994619 [9] Durrett, R. (1980). On the growth of one-dimensional contact processes. Ann. Probab. 8 890–907. MR586774 10.1214/aop/1176994619 euclid.aop/1176994619

10.

[10] Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA. MR940469[10] Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA. MR940469

11.

[11] Durrett, R. and Griffeath, D. (1982). Contact processes in several dimensions. Z. Wahrsch. Verw. Gebiete 59 535–552. MR656515[11] Durrett, R. and Griffeath, D. (1982). Contact processes in several dimensions. Z. Wahrsch. Verw. Gebiete 59 535–552. MR656515

12.

[12] Eichelsbacher, P. and König, W. (2008). Ordered random walks. Electron. J. Probab. 13 1307–1336. MR2430709 10.1214/EJP.v13-539[12] Eichelsbacher, P. and König, W. (2008). Ordered random walks. Electron. J. Probab. 13 1307–1336. MR2430709 10.1214/EJP.v13-539

13.

[13] Gray, L. (1986). Duality for general attractive spin systems with applications in one dimension. Ann. Probab. 14 371–396. MR832015 10.1214/aop/1176992522 euclid.aop/1176992522 [13] Gray, L. (1986). Duality for general attractive spin systems with applications in one dimension. Ann. Probab. 14 371–396. MR832015 10.1214/aop/1176992522 euclid.aop/1176992522

14.

[14] Griffeath, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes in Math. 724. Springer, Berlin. MR538077[14] Griffeath, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes in Math. 724. Springer, Berlin. MR538077

15.

[15] Hinrichsen, H. (2000). Nonequilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49 815–958.[15] Hinrichsen, H. (2000). Nonequilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49 815–958.

16.

[16] Jansen, S. and Kurt, N. (2014). On the notion(s) of duality for Markov processes. Probab. Surv. 11 59–120. MR3201861 10.1214/12-PS206 euclid.ps/1398778562 [16] Jansen, S. and Kurt, N. (2014). On the notion(s) of duality for Markov processes. Probab. Surv. 11 59–120. MR3201861 10.1214/12-PS206 euclid.ps/1398778562

17.

[17] Lawler, G. F. and Limic, V. (2010). Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics 123. Cambridge Univ. Press, Cambridge. MR2677157[17] Lawler, G. F. and Limic, V. (2010). Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics 123. Cambridge Univ. Press, Cambridge. MR2677157

18.

[18] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. MR2466937[18] Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. MR2466937

19.

[19] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York. MR776231[19] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York. MR776231

20.

[20] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin. MR1717346[20] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin. MR1717346

21.

[21] Neuhauser, C. (1994). A long range sexual reproduction process. Stochastic Process. Appl. 53 193–220. MR1302910 10.1016/0304-4149(94)90063-9[21] Neuhauser, C. (1994). A long range sexual reproduction process. Stochastic Process. Appl. 53 193–220. MR1302910 10.1016/0304-4149(94)90063-9

22.

[22] Neuhauser, C. and Pacala, S. W. (1999). An explicitly spatial version of the Lotka–Volterra model with interspecific competition. Ann. Appl. Probab. 9 1226–1259. MR1728561 10.1214/aoap/1029962871 euclid.aoap/1029962871 [22] Neuhauser, C. and Pacala, S. W. (1999). An explicitly spatial version of the Lotka–Volterra model with interspecific competition. Ann. Appl. Probab. 9 1226–1259. MR1728561 10.1214/aoap/1029962871 euclid.aoap/1029962871

23.

[23] Noble, C. (1992). Equilibrium behavior of the sexual reproduction process with rapid diffusion. Ann. Probab. 20 724–745. MR1159570 10.1214/aop/1176989802 euclid.aop/1176989802 [23] Noble, C. (1992). Equilibrium behavior of the sexual reproduction process with rapid diffusion. Ann. Probab. 20 724–745. MR1159570 10.1214/aop/1176989802 euclid.aop/1176989802

24.

[24] Park, S. (2012). Critical decay exponent of the pair contact process with diffusion. Preprint. Available at  arXiv:1202.60241202.6024[24] Park, S. (2012). Critical decay exponent of the pair contact process with diffusion. Preprint. Available at  arXiv:1202.60241202.6024

25.

[25] Smallenburg, F. and Barkema, G. T. (2008). Universality class of the pair contact process with diffusion. Phys. Rev. E 78 031129.[25] Smallenburg, F. and Barkema, G. T. (2008). Universality class of the pair contact process with diffusion. Phys. Rev. E 78 031129.

26.

[26] Soucaliuc, F., Tóth, B. and Werner, W. (2000). Reflection and coalescence between independent one-dimensional Brownian paths. Ann. Inst. Henri Poincaré Probab. Stat. 36 509–545. MR1785393 10.1016/S0246-0203(00)00136-9[26] Soucaliuc, F., Tóth, B. and Werner, W. (2000). Reflection and coalescence between independent one-dimensional Brownian paths. Ann. Inst. Henri Poincaré Probab. Stat. 36 509–545. MR1785393 10.1016/S0246-0203(00)00136-9

27.

[27] Sturm, A. and Swart, J. (2008). Voter models with heterozygosity selection. Ann. Appl. Probab. 18 59–99. MR2380891 10.1214/07-AAP444 euclid.aoap/1199890015 [27] Sturm, A. and Swart, J. (2008). Voter models with heterozygosity selection. Ann. Appl. Probab. 18 59–99. MR2380891 10.1214/07-AAP444 euclid.aoap/1199890015

28.

[28] Swart, J. M. (2013). Noninvadability implies noncoexistence for a class of cancellative systems. Electron. Commun. Probab. 18 1–12. MR3064997 10.1214/ECP.v18-2471[28] Swart, J. M. (2013). Noninvadability implies noncoexistence for a class of cancellative systems. Electron. Commun. Probab. 18 1–12. MR3064997 10.1214/ECP.v18-2471

29.

[29] Swart, J. M. and Vrbenský, K. (2010). Numerical analysis of the rebellious voter model. J. Stat. Phys. 140 873–899. MR2673338 10.1007/s10955-010-0021-x[29] Swart, J. M. and Vrbenský, K. (2010). Numerical analysis of the rebellious voter model. J. Stat. Phys. 140 873–899. MR2673338 10.1007/s10955-010-0021-x
Copyright © 2015 Institute of Mathematical Statistics
Anja Sturm and Jan M. Swart "A particle system with cooperative branching and coalescence," The Annals of Applied Probability 25(3), 1616-1649, (June 2015). https://doi.org/10.1214/14-AAP1032
Published: June 2015
Vol.25 • No. 3 • June 2015
Back to Top