Open Access
February 2015 Regularity conditions in the realisability problem with applications to point processes and random closed sets
Raphael Lachieze-Rey, Ilya Molchanov
Ann. Appl. Probab. 25(1): 116-149 (February 2015). DOI: 10.1214/13-AAP990
Abstract

We study existence of random elements with partially specified distributions. The technique relies on the existence of a positive extension for linear functionals accompanied by additional conditions that ensure the regularity of the extension needed for interpreting it as a probability measure. It is shown in which case the extension can be chosen to possess some invariance properties.

The results are applied to the existence of point processes with given correlation measure and random closed sets with given two-point covering function or contact distribution function. It is shown that the regularity condition can be efficiently checked in many cases in order to ensure that the obtained point processes are indeed locally finite and random sets have closed realisations.

References

1.

[1] Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis, 3rd ed. Springer, Berlin. MR2378491[1] Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis, 3rd ed. Springer, Berlin. MR2378491

2.

[2] Bourbaki, N. (1989). General Topology. Springer, Berlin. Chapters 5–10. Translated from the French, reprint of the 1966 edition.[2] Bourbaki, N. (1989). General Topology. Springer, Berlin. Chapters 5–10. Translated from the French, reprint of the 1966 edition.

3.

[3] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York. MR950166[3] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York. MR950166

4.

[4] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge Univ. Press, Cambridge. MR1932358[4] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge Univ. Press, Cambridge. MR1932358

5.

[5] Fristedt, B. and Gray, L. (1997). A Modern Approach to Probability Theory. Birkhäuser, Boston, MA. MR1422917[5] Fristedt, B. and Gray, L. (1997). A Modern Approach to Probability Theory. Birkhäuser, Boston, MA. MR1422917

6.

[6] Galerne, B. and Lachièze-Rey, R. (2013). Random measurable sets and realisability problems. Unpublished manuscript.[6] Galerne, B. and Lachièze-Rey, R. (2013). Random measurable sets and realisability problems. Unpublished manuscript.

7.

[7] Holley, R. A. and Stroock, D. W. (1978). Nearest neighbor birth and death processes on the real line. Acta Math. 140 103–154. MR488380 10.1007/BF02392306[7] Holley, R. A. and Stroock, D. W. (1978). Nearest neighbor birth and death processes on the real line. Acta Math. 140 103–154. MR488380 10.1007/BF02392306

8.

[8] Jiao, Y., Stillinger, F. H. and Torquato, S. (2007). Modeling heterogeneous materials via two-point correlation functions: Basic principles. Phys. Rev. E (3) 76 031110. MR2365559 10.1103/PhysRevE.76.031110[8] Jiao, Y., Stillinger, F. H. and Torquato, S. (2007). Modeling heterogeneous materials via two-point correlation functions: Basic principles. Phys. Rev. E (3) 76 031110. MR2365559 10.1103/PhysRevE.76.031110

9.

[9] Kellerer, H. G. (1964). Verteilungsfunktionen mit gegebenen Marginalverteilungen. Z. Wahrsch. Verw. Gebiete 3 247–270. MR175158 10.1007/BF00534912[9] Kellerer, H. G. (1964). Verteilungsfunktionen mit gegebenen Marginalverteilungen. Z. Wahrsch. Verw. Gebiete 3 247–270. MR175158 10.1007/BF00534912

10.

[10] Kondratiev, Yu. G. and Kutoviy, O. V. (2006). On the metrical properties of the configuration space. Math. Nachr. 279 774–783. MR2226411 10.1002/mana.200310392[10] Kondratiev, Yu. G. and Kutoviy, O. V. (2006). On the metrical properties of the configuration space. Math. Nachr. 279 774–783. MR2226411 10.1002/mana.200310392

11.

[11] König, H. (1997). Measure and Integration: An Advanced Course in Basic Procedures and Applications. Springer, Berlin. MR1633615[11] König, H. (1997). Measure and Integration: An Advanced Course in Basic Procedures and Applications. Springer, Berlin. MR1633615

12.

[12] Kuna, T., Lebowitz, J. L. and Speer, E. R. (2007). Realizability of point processes. J. Stat. Phys. 129 417–439. MR2351408 10.1007/s10955-007-9393-y[12] Kuna, T., Lebowitz, J. L. and Speer, E. R. (2007). Realizability of point processes. J. Stat. Phys. 129 417–439. MR2351408 10.1007/s10955-007-9393-y

13.

[13] Kuna, T., Lebowitz, J. L. and Speer, E. R. (2011). Necessary and sufficient conditions for realizability of point processes. Ann. Appl. Probab. 21 1253–1281. MR2857448 10.1214/10-AAP703 euclid.aoap/1312818836 [13] Kuna, T., Lebowitz, J. L. and Speer, E. R. (2011). Necessary and sufficient conditions for realizability of point processes. Ann. Appl. Probab. 21 1253–1281. MR2857448 10.1214/10-AAP703 euclid.aoap/1312818836

14.

[14] Kuratowski, K. (1966). Topology, Vol. I. Academic Press, New York. MR217751[14] Kuratowski, K. (1966). Topology, Vol. I. Academic Press, New York. MR217751

15.

[15] Lenard, A. (1975). States of classical statistical mechanical systems of infinitely many particles. I. Arch. Ration. Mech. Anal. 59 219–239. MR391830[15] Lenard, A. (1975). States of classical statistical mechanical systems of infinitely many particles. I. Arch. Ration. Mech. Anal. 59 219–239. MR391830

16.

[16] Lenard, A. (1975). States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures. Arch. Ration. Mech. Anal. 59 241–256. MR391831[16] Lenard, A. (1975). States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures. Arch. Ration. Mech. Anal. 59 241–256. MR391831

17.

[17] Markov, K. Z. (1995). On the “triangular” inequality in the theory of two-phase random media. Technical Report 89/1995, 159-166, Annuaire de’Universite de Sofia “St. Klimen Ohridski,” Faculte de mathematiques et Informatique, Livre I—Mathematiques et Mécanique. MR1757873[17] Markov, K. Z. (1995). On the “triangular” inequality in the theory of two-phase random media. Technical Report 89/1995, 159-166, Annuaire de’Universite de Sofia “St. Klimen Ohridski,” Faculte de mathematiques et Informatique, Livre I—Mathematiques et Mécanique. MR1757873

18.

[18] Matheron, G. (1975). Random Sets and Integral Geometry. Wiley, New York. MR385969[18] Matheron, G. (1975). Random Sets and Integral Geometry. Wiley, New York. MR385969

19.

[19] Matheron, G. (1993). Une conjecture sur covariance d’un ensemble aleatoire. Cahiers de Géostatistique 107 107–113.[19] Matheron, G. (1993). Une conjecture sur covariance d’un ensemble aleatoire. Cahiers de Géostatistique 107 107–113.

20.

[20] Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge. MR1333890[20] Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces. Cambridge Univ. Press, Cambridge. MR1333890

21.

[21] McMillan, B. (1955). History of a problem. J. Soc. Indust. Appl. Math. 3 119–128. MR74724 10.1137/0103009[21] McMillan, B. (1955). History of a problem. J. Soc. Indust. Appl. Math. 3 119–128. MR74724 10.1137/0103009

22.

[22] Molchanov, I. (2005). Theory of Random Sets. Springer, London. MR2132405[22] Molchanov, I. (2005). Theory of Random Sets. Springer, London. MR2132405

23.

[23] Molchanov, I. S. (1989). On convergence of empirical accompanying functionals of stationary random sets. Theory Probab. Math. Statist. 38 107–109. MR947527[23] Molchanov, I. S. (1989). On convergence of empirical accompanying functionals of stationary random sets. Theory Probab. Math. Statist. 38 107–109. MR947527

24.

[24] Quintanilla, J. A. (2008). Necessary and sufficient conditions for the two-point phase probability function of two-phase random media. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464 1761–1779. MR2403127 10.1098/rspa.2008.0023[24] Quintanilla, J. A. (2008). Necessary and sufficient conditions for the two-point phase probability function of two-phase random media. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464 1761–1779. MR2403127 10.1098/rspa.2008.0023

25.

[25] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin. MR2455326[25] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin. MR2455326

26.

[26] Sharakhmetov, Sh. and Ibragimov, R. (2002). A characterization of joint distribution of two-valued random variables and its applications. J. Multivariate Anal. 83 389–408. MR1945960 10.1006/jmva.2001.2059[26] Sharakhmetov, Sh. and Ibragimov, R. (2002). A characterization of joint distribution of two-valued random variables and its applications. J. Multivariate Anal. 83 389–408. MR1945960 10.1006/jmva.2001.2059

27.

[27] Shepp, L. A. (1963). On positive-definite functions associated with certain stochastic processes. Technical Report 63-1213-11, Bell Telephone Laboratories, Murray Hill, NJ.[27] Shepp, L. A. (1963). On positive-definite functions associated with certain stochastic processes. Technical Report 63-1213-11, Bell Telephone Laboratories, Murray Hill, NJ.

28.

[28] Shepp, L. A. (1967). Covariances of unit processes. In Proc. Working Conf. Stochastic Processes 205–218. Santa Barbara, California, CA.[28] Shepp, L. A. (1967). Covariances of unit processes. In Proc. Working Conf. Stochastic Processes 205–218. Santa Barbara, California, CA.

29.

[29] Silverman, R. J. (1956). Invariant linear functions. Trans. Amer. Math. Soc. 81 411–424. MR82065 10.1090/S0002-9947-1956-0082065-0[29] Silverman, R. J. (1956). Invariant linear functions. Trans. Amer. Math. Soc. 81 411–424. MR82065 10.1090/S0002-9947-1956-0082065-0

30.

[30] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd ed. Wiley, Chichester. MR895588[30] Stoyan, D., Kendall, W. S. and Mecke, J. (1995). Stochastic Geometry and Its Applications, 2nd ed. Wiley, Chichester. MR895588

31.

[31] Torquato, S. (1999). Exact conditions on physically realizable correlation functions of random media. J. Chem. Phys. 111 8832–8837.[31] Torquato, S. (1999). Exact conditions on physically realizable correlation functions of random media. J. Chem. Phys. 111 8832–8837.

32.

[32] Torquato, S. (2002). Random Heterogeneous Materials. Springer, New York. MR1862782[32] Torquato, S. (2002). Random Heterogeneous Materials. Springer, New York. MR1862782

33.

[33] Torquato, S. (2006). Necessary conditions on realizable two-point correlation functions of random media. Indus. Eng. Chem. Res. 45 6923–6928.[33] Torquato, S. (2006). Necessary conditions on realizable two-point correlation functions of random media. Indus. Eng. Chem. Res. 45 6923–6928.

34.

[34] Torquato, S. and Stell, G. (1982). Microstructure of two-phase random media. I. The $n$-point probability functions. J. Chem. Phys. 77 2071–2077. MR668092 10.1063/1.444011[34] Torquato, S. and Stell, G. (1982). Microstructure of two-phase random media. I. The $n$-point probability functions. J. Chem. Phys. 77 2071–2077. MR668092 10.1063/1.444011

35.

[35] Vulikh, B. Z. (1967). Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff, Groningen. MR224522[35] Vulikh, B. Z. (1967). Introduction to the Theory of Partially Ordered Spaces. Wolters-Noordhoff, Groningen. MR224522

36.

[36] Whittle, P. (1992). Probability via Expectation. Springer, New York. MR1163374[36] Whittle, P. (1992). Probability via Expectation. Springer, New York. MR1163374
Copyright © 2015 Institute of Mathematical Statistics
Raphael Lachieze-Rey and Ilya Molchanov "Regularity conditions in the realisability problem with applications to point processes and random closed sets," The Annals of Applied Probability 25(1), 116-149, (February 2015). https://doi.org/10.1214/13-AAP990
Published: February 2015
Vol.25 • No. 1 • February 2015
Back to Top