Abstract
We study the problem of sampling high and infinite dimensional target measures arising in applications such as conditioned diffusions and inverse problems. We focus on those that arise from approximating measures on Hilbert spaces defined via a density with respect to a Gaussian reference measure. We consider the Metropolis–Hastings algorithm that adds an accept–reject mechanism to a Markov chain proposal in order to make the chain reversible with respect to the target measure. We focus on cases where the proposal is either a Gaussian random walk (RWM) with covariance equal to that of the reference measure or an Ornstein–Uhlenbeck proposal (pCN) for which the reference measure is invariant.
Previous results in terms of scaling and diffusion limits suggested that the pCN has a convergence rate that is independent of the dimension while the RWM method has undesirable dimension-dependent behaviour. We confirm this claim by exhibiting a dimension-independent Wasserstein spectral gap for pCN algorithm for a large class of target measures. In our setting this Wasserstein spectral gap implies an
Citation
Martin Hairer. Andrew M. Stuart. Sebastian J. Vollmer. "Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions." Ann. Appl. Probab. 24 (6) 2455 - 2490, December 2014. https://doi.org/10.1214/13-AAP982
Information