The Annals of Applied Probability

Traveling waves of selective sweeps

Rick Durrett and John Mayberry

Full-text: Open access

Abstract

The goal of cancer genome sequencing projects is to determine the genetic alterations that cause common cancers. Many malignancies arise during the clonal expansion of a benign tumor which motivates the study of recurrent selective sweeps in an exponentially growing population. To better understand this process, Beerenwinkel et al. [PLoS Comput. Biol. 3 (2007) 2239–2246] consider a Wright–Fisher model in which cells from an exponentially growing population accumulate advantageous mutations. Simulations show a traveling wave in which the time of the first k-fold mutant, Tk, is approximately linear in k and heuristics are used to obtain formulas for ETk. Here, we consider the analogous problem for the Moran model and prove that as the mutation rate μ → 0, Tkck log(1 / μ), where the ck can be computed explicitly. In addition, we derive a limiting result on a log scale for the size of Xk(t) = the number of cells with k mutations at time t.

Article information

Source
Ann. Appl. Probab. Volume 21, Number 2 (2011), 699-744.

Dates
First available in Project Euclid: 22 March 2011

Permanent link to this document
http://projecteuclid.org/euclid.aoap/1300800986

Digital Object Identifier
doi:10.1214/10-AAP721

Zentralblatt MATH identifier
05886815

Mathematical Reviews number (MathSciNet)
MR2807971

Subjects
Primary: 60J85, 92D25
Secondary: 92C50.

Keywords
Moran model selective sweep rate of adaptation stochastic tunneling branching processes cancer models

Citation

Durrett, Rick; Mayberry, John. Traveling waves of selective sweeps. The Annals of Applied Probability 21 (2011), no. 2, 699--744. doi:10.1214/10-AAP721. http://projecteuclid.org/euclid.aoap/1300800986.


Export citation

References

  • [1] Armitage, P. and Doll, R. (1954). The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8 1–12.
  • [2] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.
  • [3] Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K. W., Velculescu, V. E., Vogelstein, B. and Nowak, M. A. (2007). Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 3 2239–2246.
  • [4] Brunet, E., Rouzine, I. M. and Wilke, C. O. (2008). The stochastic edge in adaptive evolution. Genetics 179 603–620.
  • [5] Calabrese, P., Mecklin, J.-P., Järvinen, H. J., Aaltonen, L. A., Tavaré, S. A. and Shibata, D. (2005). Numbers of mutations to different types of colorectal cancer. BMC Cancer 5 126.
  • [6] Desai, M. M. and Fisher, D. S. (2007). Beneficial mutation selection balance and the effect of linkage on positive selection. Genetics 176 1759–1798.
  • [7] Durrett, R. (2008). Probability Models for DNA Sequence Evolution, 2nd ed. Springer, New York.
  • [8] Durrett, R. and Schmidt, D. (2008). Waiting for two mutations: With applications to regulatory sequence evolution and the limits of Darwinian evolution. Genetics 180 1501–1509.
  • [9] Durrett, R., Schmidt, D. and Schweinsberg, J. (2009). A waiting time problem arising from the study of multi-stage carcinogenesis. Ann. Appl. Probab. 19 676–718.
  • [10] Frank, S. A. (2007). Dynamics of Cancer: Incidence, Inheritance and Evolution. Princeton Univ. Press, Princeton, NJ.
  • [11] Haeno, H., Iwasa, Y. and Michor, F. (2007). The evolution of two mutations during clonal expansion. Genetics 177 2209–2221.
  • [12] Iwasa, Y., Nowak, M. A. and Michor, F. (2006). Evolution of resistance during clonal expansion. Genetics 172 2557–2566.
  • [13] Jones, S., Zhang, X., Parsons, D. W., Lin, J. C.-H., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S.-M., Fu, B., Lin, M.-T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E. and Kinzler, K. W. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321 1801–1806.
  • [14] A. G. Knudson, J. (1971). Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68 820–823.
  • [15] Knudson, A. G. (2001). Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1 157–162.
  • [16] Kurtz, T. G. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7 49–58.
  • [17] Luebeck, E. G. and Moolgavkar, S. H. (2002). Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl. Acad. Sci. USA 99 15095–15100.
  • [18] Muller, H. J. (1932). Some genetic aspects of sex. Am. Natur. 66 118–138.
  • [19] Parsons, D. W., Jones, S., Zhang, X., Lin, J. C.-H., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Siu, I.-M., Gallia, G. L., Olivi, A., McLendon, R., Rasheed, B. A., Keir, S., Nikolskaya, T., Nikolsky, Y., Busam, D. A., Tekleab, H., Luis A. Diaz, J., Hartigan, J., Smith, D. R., Strausberg, R. L., Marie, S. K. N., Shinjo, S. M. O., Yan, H., Riggins, G. J., Bigner, D. D., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E. and Kinzler, K. W. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321 1807–1812.
  • [20] Rouzine, I. M., Brunet, E. and Wilke, C. O. (2008). The traveling-wave approach to asexual evolution: Muller’s ratchet and speed of adaptation. Theor. Popul. Biol. 73 24–46.
  • [21] Rouzine, I. M., Wakeley, J. and Coffin, J. M. (2003). The solitary wave of asexual evolution. Proc. Natl. Acad. Sci. USA 100 587–592.
  • [22] Schweinsberg, J. (2008). The waiting time for m mutations. Electron. J. Probab. 13 1442–1478.
  • [23] Sjoblom, T. et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science 314 268–274.
  • [24] The Cancer Genome Altas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455 1061–1068.
  • [25] Wodarz, D. and Komarova, N. L. (2005). Computational Biology of Cancer. World-Scientific, Singapore.
  • [26] Wood, L. et. al. (2007). The genomic landscape of human breast and colorectal cancers. Science 318 1108–1113.
  • [27] Yu, F. and Etheridge, A. (2008). Rate of Adaptation of Large Populations. Evolutionary Biology from Concept to Application 3–27. Springer, Berlin.
  • [28] Yu, F., Etheridge, A. and Cuthbertson, C. (2010). Asymptotic behavior of the rate of adaptation. Ann. Appl. Probab. 20 978–1004.