Abstract
Consider a binary tree, to the vertices of which are assigned independent Bernoulli random variables with mean p≤1/2. How many of these Bernoullis one must look at in order to find a path of length n from the root which maximizes, up to a factor of 1−ɛ, the sum of the Bernoullis along the path? In the case p=1/2 (the critical value for nontriviality), it is shown to take Θ(ɛ−1n) steps. In the case p<1/2, the number of steps is shown to be at least n⋅exp(const ɛ−1/2). This last result matches the known upper bound from [Algorithmica 22 (1998) 388–412] in a certain family of subcases.
Citation
Robin Pemantle. "Search cost for a nearly optimal path in a binary tree." Ann. Appl. Probab. 19 (4) 1273 - 1291, August 2009. https://doi.org/10.1214/08-AAP585
Information