Abstract
Let (An)n∈ℕ be a stationary sequence of topical (i.e., isotone and additively homogeneous) operators. Let x(n, x0) be defined by x(0, x0)=x0 and x(n+1, x0)=Anx(n, x0). It can model a wide range of systems including train or queuing networks, job-shop, timed digital circuits or parallel processing systems.
When (An)n∈ℕ has the memory loss property, (x(n, x0))n∈ℕ satisfies a strong law of large numbers. We show that it also satisfies the CLT if (An)n∈ℕ fulfills the same mixing and integrability assumptions that ensure the CLT for a sum of real variables in the results by P. Billingsley and I. Ibragimov.
Citation
Glenn Merlet. "A central limit theorem for stochastic recursive sequences of topical operators." Ann. Appl. Probab. 17 (4) 1347 - 1361, August 2007. https://doi.org/10.1214/105051607000000168
Information