Open Access
November, 1993 A Variational Characterization of the Speed of a One-Dimensional Self- Repellent Random Walk
Andreas Greven, Frank den Hollander
Ann. Appl. Probab. 3(4): 1067-1099 (November, 1993). DOI: 10.1214/aoap/1177005273

Abstract

Let $Q^\alpha_n$ be the probability measure for an $n$-step random walk $(0,S_1,\ldots,S_n)$ on $\mathbb{Z}$ obtained by weighting simple random walk with a factor $1 - \alpha$ for every self-intersection. This is a model for a one-dimensional polymer. We prove that for every $\alpha \in (0,1)$ there exists $\theta^\ast(\alpha) \in (0,1)$ such that $\lim_{n\rightarrow \infty} Q^\alpha_n\Bigg(\frac{|S_n|}{n} \in \lbrack\theta^\ast(\alpha) - \varepsilon,\theta^\ast(\alpha) + \varepsilon\rbrack\Bigg) = 1 \text{for every} \varepsilon > 0.$ We give a characterization of $\theta^\ast(\alpha)$ in terms of the largest eigenvalue of a one-parameter family of $\mathbb{N} \times \mathbb{N}$ matrices. This allows us to prove that $\theta^\ast(\alpha)$ is an analytic function of the strength $\alpha$ of the self-repellence. In addition to the speed we prove a limit law for the local times of the random walk. The techniques used enable us to treat more general forms of self-repellence involving multiple intersections. We formulate a partial differential inequality that is equivalent to $\alpha \rightarrow \theta^\ast(\alpha)$ being (strictly) increasing. The verification of this inequality remains open.

Citation

Download Citation

Andreas Greven. Frank den Hollander. "A Variational Characterization of the Speed of a One-Dimensional Self- Repellent Random Walk." Ann. Appl. Probab. 3 (4) 1067 - 1099, November, 1993. https://doi.org/10.1214/aoap/1177005273

Information

Published: November, 1993
First available in Project Euclid: 19 April 2007

zbMATH: 0784.60094
MathSciNet: MR1241035
Digital Object Identifier: 10.1214/aoap/1177005273

Subjects:
Primary: 60K35
Secondary: 58E30 , 60F10 , 60J15

Keywords: large deviations , Polymer model , self-repellent random walk , variational problems

Rights: Copyright © 1993 Institute of Mathematical Statistics

Vol.3 • No. 4 • November, 1993
Back to Top