Open Access
November 1997 The central limit theorem for Euclidean minimal spanning trees I I
Sungchul Lee
Ann. Appl. Probab. 7(4): 996-1020 (November 1997). DOI: 10.1214/aoap/1043862422

Abstract

Let Xi:i1 be i.i.d. with uniform distribution [1/2,1/2]d,d2, and let Tn be a minimal spanning tree on X1,,Xn. For each strictly positive integer α, let N(X1,,Xn;α) be the number of vertices of degree α in Tn. Then, for each α such that P(N(X1,,Xα+1;α)=1)>0, we prove a central limit theorem for N(X1,,Xn;α).

Citation

Download Citation

Sungchul Lee. "The central limit theorem for Euclidean minimal spanning trees I I." Ann. Appl. Probab. 7 (4) 996 - 1020, November 1997. https://doi.org/10.1214/aoap/1043862422

Information

Published: November 1997
First available in Project Euclid: 29 January 2003

zbMATH: 0892.60034
MathSciNet: MR1484795
Digital Object Identifier: 10.1214/aoap/1043862422

Subjects:
Primary: 60D05 , 60F05
Secondary: 05C05 , 60K35 , 90C27

Keywords: central limit theorem , continuum percolation , Minimal spanning tree

Rights: Copyright © 1997 Institute of Mathematical Statistics

Vol.7 • No. 4 • November 1997
Back to Top