The Annals of Applied Probability

Optimal investment with transaction costs and without semimartingales

Paolo Guasoni

Full-text: Open access


We consider a general class of optimization problems in financial markets with incomplete information and transaction costs. Under a no-arbitrage condition strictly weaker than the existence of a martingale measure, and when asset prices are quasi-left-continuous processes, we show the existence of optimal strategies. Applications include maximization of expected utility, minimization of coherent risk measures and hedging of contingent claims.

Article information

Ann. Appl. Probab. Volume 12, Number 4 (2002), 1227-1246.

First available: 12 November 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H30: Applications of stochastic analysis (to PDE, etc.) 62P05: Applications to actuarial sciences and financial mathematics 91B30: Risk theory, insurance 26A45: Functions of bounded variation, generalizations

Transaction costs incomplete markets coherent risk measures utility maximization


Guasoni, Paolo. Optimal investment with transaction costs and without semimartingales. The Annals of Applied Probability 12 (2002), no. 4, 1227--1246. doi:10.1214/aoap/1037125861.

Export citation


  • [1] CVITANI ´C, J. (2000). Minimizing expected loss of hedging in incomplete and constrained markets. SIAM J. Control Optim. 38 1050-1066 (electronic).
  • [2] CVITANI ´C, J. and KARATZAS, I. (1996). Hedging and portfolio optimization under transaction costs: a martingale approach. Math. Finance 6 133-165.
  • [3] DELBAEN, F. (2000). Coherent risk measures on general probability spaces. Preprint, ETH Zurich.
  • [4] DELBAEN, F. and SCHACHERMAy ER, W. (1994). A general version of the fundamental theorem of asset pricing. Math. Ann. 300 463-520.
  • [5] DELLACHERIE, C. and MEy ER, P. A. (1978). Probabilities and Potential. North-Holland, Amsterdam.
  • [6] DELLACHERIE, C. and MEy ER, P. A. (1982). Probabilities and Potential B. North-Holland, Amsterdam.
  • [7] GUASONI, P. (2002). Optimal investment problems under market frictions. Ph.D. thesis, Scuola Normale Superiore, Pisa.
  • [8] GUASONI, P. (2002). Risk minimization under transaction costs. Finance and Stochastics 6 91-113.
  • [9] JOUINI, E. and KALLAL, H. (1995). Martingales and arbitrage in securities markets with transaction costs. J. Econom. Theory 66 178-197.
  • [10] KABANOV, Y. and LAST, G. (2001). Hedging under transaction costs in currency markets: a continuous-time model. Math. Finance 12 63-70.
  • [11] KABANOV, Y. M., RÁSONy I, M. and STRICKER, C. (2001). On the closedness of sums of convex cones in l0 and the robust no-arbitrage property. Preprint.
  • [12] KABANOV, Y. M. and STRICKER, C. (2001). The Harrison-Pliska arbitrage pricing theorem under transaction costs. J. Math. Econom. 35 185-196.
  • [13] KARATZAS, I., LEHOCZKY, J. P., SHREVE, S. E. and XU, G.-L. (1991). Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29 702-730.
  • [14] KRAMKOV, D. O. (1996). Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Related Fields 105 459- 479.
  • [15] KRAMKOV, D. and SCHACHERMAy ER, W. (1999). The asy mptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9 904-950.
  • [16] KREPS, D. M. (1981). Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econom. 8 15-35.
  • [17] MERTON, R. C. (1969). Lifetime portfolio selection under uncertainty: the continuous time case. Rev. Econom. Statist. 51 247-257.
  • [18] SCHACHERMAy ER, W. (2001). The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Preprint, TU-Wien.
  • [19] SCHACHERMAy ER, W. (2001). Utility maximization in incomplete financial markets. Lecture notes, Scuola Normale Superiore, Pisa.
  • [20] YAN, J. A. (1980). Caractérisation d'une classe d'ensembles convexes de L1 ou H 1. Seminar on Probability XIV. Lecture Notes in Math. 784 220-222. Springer, Berlin.