The Annals of Applied Probability

Recursive valuation of defaultable securities and the timing of resolution of uncertainty

Darrell Duffie, Mark Schroder, and Costis Skiadas

Full-text: Open access


We derive the implications of default risk for valuation of securities in an abstract setting in which the fractional default recovery rate and the hazard rate for default may depend on the market value of the instrument itself, or on the market values of other instruments issued by the same entity (which are determined simultaneously). A key technique is the use of backward recursive stochastic integral equations. We characterize the dependence of the market value on the manner of resolution of uncertainty, and in particular give conditions for monotonicity of value with respect to the information filtration.

Article information

Ann. Appl. Probab. Volume 6, Number 4 (1996), 1075-1090.

First available in Project Euclid: 24 October 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 90A09 60H20: Stochastic integral equations

Default credit risk backward stochastic differential equations timing of resolution of uncertainty


Duffie, Darrell; Schroder, Mark; Skiadas, Costis. Recursive valuation of defaultable securities and the timing of resolution of uncertainty. Ann. Appl. Probab. 6 (1996), no. 4, 1075--1090. doi:10.1214/aoap/1035463324.

Export citation


  • Antonelli, F. (1993). Backward-forward stochastic differential equations. Ann. Appl. Probab. 3 777-793.
  • Artzner, P. and Delbaen, F. (1990). "Finem lauda" or the risk in swaps. Insurance Math. Econ. 9 295-303.
  • Artzner, P. and Delbaen, F. (1992). Default risk insurance and incomplete markets. Working paper, Vrije Univ., Brussels.
  • Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J. Political Economy 81 637-654.
  • Br´emaud, P. (1981). Point Processes and Queues. Springer, New York.
  • Brennan, M. and Schwartz, E. (1980). Analy sing convertible bonds. J. Financial and Quantitative Analy sis 10 907-929.
  • Cooper, I. and Mello, A. (1991). The default risk of swaps. J. Finance 46 597-620.
  • Cotter, K. D. (1986). Similarity of information and behavior with a pointwise convergence topology. J. Math. Econom. 15 25-38.
  • Dellacherie, C. and Meyer, P. (1976, 1982). Probabilities and Potential. North-Holland, Amsterdam.
  • Duffie, D. and Epstein, L. G. (appendix with C. Skiadas). (1992). Stochastic differential utility. Econometrica 60 353-394.
  • Duffie, D. and Huang, M. (1994). Swap rates and credit quality. J. Finance. To appear.
  • Duffie, D. and Singleton, K. (1994). Modeling term structures of defaultable bonds. Working paper, Graduate School of Business, Stanford Univ.
  • Epstein, L. G. and Turnbull, S. M. (1980). Capital asset prices and the temporal resolution of uncertainty. J. Finance 35 627-643.
  • Ethier, S. and Kurtz, T. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • Harrison, M. and Kreps, D. (1979). Martingales and arbitrage in multiperiod security markets. J. Econom. Theory 20 381-408.
  • Huang, C.-F. (1985). Information structure and equilibrium asset prices. J. Econom. Theory 35 33-71.
  • Hull, J. and White, A. (1992). The price of default. Risk 5 101-103.
  • Hull, J. and White, A. (1995). The impact of default risk on the prices of options and other derivative securities. J. Banking and Finance 19 299-322.
  • Jacod, J. and Shiry aev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, New York.
  • Jarrow, R., Lando, D. and Turnbull, S. (1993). A Markov model for the term structure of credit spreads. Review of Financial Studies. To appear.
  • Jarrow, R. and Turnbull, S. (1995). Pricing options on financial securities subject to default risk. J. Finance 50 53-86.
  • Lando, D. (1993). A continuous-time Markov model of the term structure of credit risk spreads. Working paper, GSM, Cornell Univ.
  • Lando, D. (1994). On Cox processes and credit risky bonds. Working paper, Inst. Statistics, Univ. Copenhagen.
  • Lipster, R. S. and Shiry ayev, A. N. (1978). Statistics of Random Processes 2. Springer, New York.
  • Longstaff, F. and Schwartz, E. (1993). Valuing risky debt: a new approach. Working paper, Anderson School of Management, Univ. California, Los Angeles.
  • Madan, D. and Unal, H. (1993). Pricing the risks of default. Working paper, College of Business, Univ. Mary land.
  • Nabar, P., Stapleton, R. and Subramany am, M. (1988). Default risk, resolution of uncertainty and the interest rate on corporate loans. Studies in Banking and Finance 5 221-245.
  • Nielsen, L. T., Sa´a-Requejo, J. and Santa-Clara, P. (1993). Default risk and interest rate risk: the term structure of default spreads. Working paper, INSEAD, Fontainebleau, France.
  • Protter, P. (1990). Stochastic Integration and Differential Equations. Springer, New York.
  • Py e, G. (1974). Gauging the default premium. Financial Analy sts Journal (Jan.­Feb.) 49-52.
  • Ramaswamy, K. and Sundaresan, S. (1986). The valuation of floating-rate instruments, theory and evidence. J. Financial Economics 17 251-272.
  • Rendlemann, R. (1992). How risks are shared in interest rate swaps. J. Financial Services Research 5-34.
  • Robichek, A. A. and My ers, S. C. (1966). Valuation of the firm: effects of uncertainty in a market context. J. Finance 21 215-227.
  • Ross, S. (1989). Information and volatility: the no-arbitrage martingale approach to timing and resolution irrelevancy. J. Finance 44 1-17.
  • Skiadas, C. (1996). Time-coherent choice and preferences for information. Working Paper No. 196, Dept. Finance, KGSM, Northwestern Univ.