Open Access
May 2017 Homogenization via sprinkling
Itai Benjamini, Vincent Tassion
Ann. Inst. H. Poincaré Probab. Statist. 53(2): 997-1005 (May 2017). DOI: 10.1214/16-AIHP746

Abstract

We show that a superposition of an $\varepsilon$-Bernoulli bond percolation and any everywhere percolating subgraph of $\mathbb{Z}^{d}$, $d\ge2$, results in a connected subgraph, which after a renormalization dominates supercritical Bernoulli percolation. This result, which confirms a conjecture from (J. Math. Phys. 41 (2000) 1294–1297), is mainly motivated by obtaining finite volume characterizations of uniqueness for general percolation processes.

On considère un sous-graphe de $\mathbb{Z}^{d}$, $d\ge2$, dont toutes les composantes connexes sont infinies. On montre que la superposition d’un tel sous-graphe avec une $\varepsilon$-percolation forme un graphe connexe qui, convenablement renormalisé, domine une percolation de Bernoulli surcritique. Ce résultat confirme une conjecture énoncée dans (J. Math. Phys. 41 (2000) 1294–1297), et sa motivation principale est d’obtenir des caractérisations en volume fini de l’unicité de l’amas infini pour des processus de percolation généraux.

Citation

Download Citation

Itai Benjamini. Vincent Tassion. "Homogenization via sprinkling." Ann. Inst. H. Poincaré Probab. Statist. 53 (2) 997 - 1005, May 2017. https://doi.org/10.1214/16-AIHP746

Information

Received: 12 June 2015; Revised: 13 November 2015; Accepted: 7 February 2016; Published: May 2017
First available in Project Euclid: 11 April 2017

zbMATH: 1370.60186
MathSciNet: MR3634283
Digital Object Identifier: 10.1214/16-AIHP746

Subjects:
Primary: 05C80 , 60K35

Keywords: Finite-size criterion , percolation , Random geometry , Sprinkling

Rights: Copyright © 2017 Institut Henri Poincaré

Vol.53 • No. 2 • May 2017
Back to Top