Open Access
November 2016 From averaging to homogenization in cellular flows – An exact description of the transition
Martin Hairer, Leonid Koralov, Zsolt Pajor-Gyulai
Ann. Inst. H. Poincaré Probab. Statist. 52(4): 1592-1613 (November 2016). DOI: 10.1214/15-AIHP690

Abstract

We consider a two-parameter averaging-homogenization type elliptic problem together with the stochastic representation of the solution. A limit theorem is derived for the corresponding diffusion process and a precise description of the two-parameter limit behavior for the solution of the PDE is obtained.

Nous considérons un problème elliptique de type moyennisation / homogénisation à deux paramètres, en combinaison avec la représentation stochastique de la solution. Nous obtenons un théorème limite pour le processus de diffusion correspondant ainsi qu’une description précise du comportement limite de la solution de l’EDP.

Citation

Download Citation

Martin Hairer. Leonid Koralov. Zsolt Pajor-Gyulai. "From averaging to homogenization in cellular flows – An exact description of the transition." Ann. Inst. H. Poincaré Probab. Statist. 52 (4) 1592 - 1613, November 2016. https://doi.org/10.1214/15-AIHP690

Information

Received: 4 July 2014; Revised: 20 April 2015; Accepted: 26 May 2015; Published: November 2016
First available in Project Euclid: 17 November 2016

zbMATH: 1356.35033
MathSciNet: MR3573288
Digital Object Identifier: 10.1214/15-AIHP690

Subjects:
Primary: 35B27

Keywords: averaging , Diffusion on graphs , Homogenization‎ , Local time

Rights: Copyright © 2016 Institut Henri Poincaré

Vol.52 • No. 4 • November 2016
Back to Top