Loading [MathJax]/jax/output/CommonHTML/jax.js
Open Access
May 2014 The spread of a catalytic branching random walk
Philippe Carmona, Yueyun Hu
Ann. Inst. H. Poincaré Probab. Statist. 50(2): 327-351 (May 2014). DOI: 10.1214/12-AIHP529

Abstract

We consider a catalytic branching random walk on Z that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position Mn: For some constant α, Mnnα almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for Mnαn as n goes to infinity.

Nous considérons une marche aléatoire branchant catalytique sur Z qui ne branche qu’à l’origine. Dans le cas surcritique, nous établissons une loi des grands nombres pour la position maximale Mn : Il existe une constante α explicite telle que Mnnα presque sûrement sur l’ensemble des trajectoires pour lesquelles l’origine est visitée une infinité de fois.

Ensuite, nous déterminons toutes les lois limites possibles, lorsque n+, pour la suite Mnαn.

Citation

Download Citation

Philippe Carmona. Yueyun Hu. "The spread of a catalytic branching random walk." Ann. Inst. H. Poincaré Probab. Statist. 50 (2) 327 - 351, May 2014. https://doi.org/10.1214/12-AIHP529

Information

Published: May 2014
First available in Project Euclid: 26 March 2014

zbMATH: 1291.60208
MathSciNet: MR3189074
Digital Object Identifier: 10.1214/12-AIHP529

Subjects:
Primary: 60K37

Keywords: branching processes , Catalytic branching random walk

Rights: Copyright © 2014 Institut Henri Poincaré

Vol.50 • No. 2 • May 2014
Back to Top