Open Access
May 2011 Limit laws of transient excited random walks on integers
Elena Kosygina, Thomas Mountford
Ann. Inst. H. Poincaré Probab. Statist. 47(2): 575-600 (May 2011). DOI: 10.1214/10-AIHP376

Abstract

We consider excited random walks (ERWs) on ℤ with a bounded number of i.i.d. cookies per site without the non-negativity assumption on the drifts induced by the cookies. Kosygina and Zerner [15] have shown that when the total expected drift per site, δ, is larger than 1 then ERW is transient to the right and, moreover, for δ>4 under the averaged measure it obeys the Central Limit Theorem. We show that when δ∈(2, 4] the limiting behavior of an appropriately centered and scaled excited random walk under the averaged measure is described by a strictly stable law with parameter δ/2. Our method also extends the results obtained by Basdevant and Singh [2] for δ∈(1, 2] under the non-negativity assumption to the setting which allows both positive and negative cookies.

On considère des marches aléatoires excitées sur ℤ avec un nombre borné de cookies i.i.d. à chaque site, ceci sans l’hypothèse de positivité. Auparavent, Kosygina et Zerner [15] ont établi que si la dérive totale moyenne par site, δ, est strictement superieur à 1, alors la marche est transiente (vers la droite) et, de plus, pour δ>4 il y a un théorème central limite pour la position de la marche. Ici, on démontre que pour δ∈(2, 4] cette position, convenablement centrée et réduite, converge vers une loi stable de paramètre δ/2. L’approche permet également d’étendre les résultats de Basdevant et Singh [2] pour δ∈(1, 2] à notre cadre plus général.

Citation

Download Citation

Elena Kosygina. Thomas Mountford. "Limit laws of transient excited random walks on integers." Ann. Inst. H. Poincaré Probab. Statist. 47 (2) 575 - 600, May 2011. https://doi.org/10.1214/10-AIHP376

Information

Published: May 2011
First available in Project Euclid: 23 March 2011

zbMATH: 1215.60057
MathSciNet: MR2814424
Digital Object Identifier: 10.1214/10-AIHP376

Subjects:
Primary: 60F05 , 60J80 , 60K37
Secondary: 60J60

Keywords: branching process , diffusion approximation , excited random walk , limit theorem , Stable law

Rights: Copyright © 2011 Institut Henri Poincaré

Vol.47 • No. 2 • May 2011
Back to Top