Abstract
Consider a random walk in random environment on a supercritical Galton–Watson tree, and let τn be the hitting time of generation n. The paper presents a large deviation principle for τn/n, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.
Nous considérons une marche aléatoire en milieu aléatoire sur un arbre de Galton–Watson. Soit τn le temps d’atteinte du niveau n. Le papier présente un principe de grandes déviations pour τn/n, dans les cas quenched et annealed. Nous étudions ensuite le régime sous-exponentiel, qui fait apparaître un régime polynomial rappelant la dimension 1. Le papier repose principalement sur les estimations de la queue de distribution du premier temps de renouvellement.
Citation
Elie Aidékon. "Large deviations for transient random walks in random environment on a Galton–Watson tree." Ann. Inst. H. Poincaré Probab. Statist. 46 (1) 159 - 189, February 2010. https://doi.org/10.1214/09-AIHP204
Information