Abstract
We derive a quenched invariance principle for random walks in random environments whose transition probabilities are defined in terms of weighted cycles of bounded length. To this end, we adapt the proof for random walks among random conductances by Sidoravicius and Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) to the non-reversible setting.
Nous dérivons un principe d’invariance presque sûr pour les marches aléatoires en milieu aléatoire dont les transitions sont données par des poids indexés par des cycles bornés. A cet effet nous adaptons la démonstration pour les marches symétriques en milieu aléatoire de Sidoravicius et Sznitman (Probab. Theory Related Fields 129 (2004) 219–244) dans le cas non réversible.
Citation
Jean-Dominique Deuschel. Holger Kösters. "The quenched invariance principle for random walks in random environments admitting a bounded cycle representation." Ann. Inst. H. Poincaré Probab. Statist. 44 (3) 574 - 591, June 2008. https://doi.org/10.1214/07-AIHP122
Information