Arkiv för Matematik

  • Ark. Mat.
  • Volume 45, Number 2 (2007), 279-296.

Calabi–Yau threefolds arising from fiber products of rational quasi-elliptic surfaces, I

Masayuki Hirokado, Hiroyuki Ito, and Natsuo Saito

Full-text: Open access

Abstract

In this paper, we construct some unirational Calabi–Yau threefolds in characteristic 3. We adopt the method by Schoen, but we use quasi-elliptic surfaces instead of elliptic surfaces. We find new examples which do not admit a lifting to characteristic zero.

Article information

Source
Ark. Mat. Volume 45, Number 2 (2007), 279-296.

Dates
Received: 28 August 2006
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.afm/1485898984

Digital Object Identifier
doi:10.1007/s11512-007-0041-1

Zentralblatt MATH identifier
1156.14033

Rights
2007 © Institut Mittag-Leffler

Citation

Hirokado, Masayuki; Ito, Hiroyuki; Saito, Natsuo. Calabi–Yau threefolds arising from fiber products of rational quasi-elliptic surfaces, I. Ark. Mat. 45 (2007), no. 2, 279--296. doi:10.1007/s11512-007-0041-1. http://projecteuclid.org/euclid.afm/1485898984.


Export citation

References

  • Artin, M. and Mazur, B., Formal groups arising from algebraic varieties, Ann. Sci. École Norm. Sup. 10 (1977), 87–131.
  • Batyrev, V. V., Birational Calabi–Yau n-folds have equal Betti numbers, in New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser. 264, pp. 1–11, Cambridge University Press, Cambridge, 1999.
  • Bombieri, E. and Mumford, D., Enriques’ classification of surfaces in char. p. III, Invent. Math. 35 (1976), 197–232.
  • Bombieri, E. and Mumford, D., Enriques’ classification of surfaces in char. p. II, in Complex Analysis and Algebraic Geometry, pp. 23–42, Iwanami Shoten, Tokyo, 1977.
  • Dolgachev, I. V., The Euler characteristic of a family of algebraic varieties, Mat. Sb. 89 (1972), 297–312 (Russian). English transl. Math. USSR-Sb. 18 (1972), 303–319.
  • Ekedahl, T., On non-liftable Calabi–Yau threefolds, Preprint, 2004. arXiv:math.AG/0306435 v2.
  • Ekedahl, T. and Shepherd-Barron, N. I., Tangent lifting of deformations in mixed characteristic, J. Algebra 291 (2005), 108–128.
  • van der Geer, G. and Katsura, T., An invariant for varieties in positive characteristic, in Algebraic Number Theory and Algebraic Geometry, Contemp. Math. 300, pp. 131–141. Amer. Math. Soc., Providence, RI, 2002.
  • van der Geer, G. and Katsura, T., On the height of Calabi–Yau varieties in positive characteristic, Doc. Math. 8 (2003), 97–113.
  • Grauert, H. and Riemenschneider, O., Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292.
  • Hartshorne, R., Algebraic Geometry, Springer, New York, 1977.
  • Hirokado, M., A non-liftable Calabi–Yau threefold in characteristic 3, Tôhoku Math. J. 51 (1999), 479–487.
  • Hirokado, M., Calabi–Yau threefolds obtained as fiber products of elliptic and quasi-elliptic rational surfaces, J. Pure Appl. Algebra 162 (2001), 251–271.
  • Hirokado, M., Deformations of rational double points and simple elliptic singularities in characteristic p, Osaka J. Math. 41 (2004), 605–616.
  • Illusie, L., Complexe de de Rham–Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. 12 (1979), 501–661.
  • Ito, H., The Mordell–Weil groups of unirational quasi-elliptic surfaces in characteristic 3, Math. Z. 211 (1992), 1–39.
  • Ito, H., The Mordell–Weil groups of unirational quasi-elliptic surfaces in characteristic 2, Tôhoku Math. J. 46 (1994), 221–251.
  • Kollár, J. and Mori, S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics 134, Cambridge University Press, Cambridge, 1998.
  • Lang, W. E., Quasi-elliptic surfaces in characteristic three, Ann. Sci. École Norm. Sup. 12 (1979), 473–500.
  • Milne, J. S., Étale Cohomology, Princeton Mathematical Series 33, Princeton University Press, Princeton, NJ, 1980.
  • Mori, S. and Saito, N., Fano threefolds with wild conic bundle structures, Proc. Japan Acad. Ser. A Math. Sci. 79 (2003), 111–114.
  • Nygaard, N., On the fundamental group of a unirational 3-fold, Invent. Math. 44 (1978), 75–86.
  • Reid, M., Canonical 3-folds, in Journées de Géometrie Algébrique d’Angers (Juillet 1979)/Algebraic Geometry (Angers, 1979), pp. 273–310. Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.
  • Saito, N., Fano threefolds with Picard number 2 in positive characteristic, Kodai Math. J. 26 (2003), 147–166.
  • Schoen, C., On fiber products of rational elliptic surfaces with section, Math. Z. 197 (1988), 177–199.
  • Schröer, S., The T1-lifting theorem in positive characteristic, J. Algebraic Geom. 12 (2003), 699–714.
  • Schröer, S., Some Calabi–Yau threefolds with obstructed deformations over the Witt vectors, Compos. Math. 140 (2004), 1579–1592.
  • Serre, J. P., Représentations linéaires des groupes finis, revised edition. Hermann, Paris, 1978.
  • Shimada, I., Unirationality of certain complete intersections in positive characteristics, Tôhoku Math. J. 44 (1992), 379–393.
  • Shioda, T. and Katsura, T., On Fermat varieties, Tôhoku Math. J. 31 (1979), 97–115.
  • Smith, K. E., F-rational rings have rational singularities, Amer. J. Math. 119 (1997), 159–180.