Arkiv för Matematik

  • Ark. Mat.
  • Volume 40, Number 1 (2002), 105-132.

Very weak solutions of parabolic systems of p-Laplacian type

Juha Kinnunen and John L. Lewis

Full-text: Open access

Note

This research was partially conceived at the Mittag-Leffler Institute during a special year in PDE's in 1999–2000. The authors wish to thank the Institute for gracious hospitality. The first author was also supported by the Academy of Finland and the second author by an NSF Grant.

Article information

Source
Ark. Mat. Volume 40, Number 1 (2002), 105-132.

Dates
Received: 11 December 2000
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.afm/1485898756

Digital Object Identifier
doi:10.1007/BF02384505

Zentralblatt MATH identifier
1011.35039

Rights
2002 © Institut Mittag-Leffler

Citation

Kinnunen, Juha; Lewis, John L. Very weak solutions of parabolic systems of p -Laplacian type. Ark. Mat. 40 (2002), no. 1, 105--132. doi:10.1007/BF02384505. http://projecteuclid.org/euclid.afm/1485898756.


Export citation

References

  • Acerbi, E. and Fusco, N., Semicontinuity problems in the calculus of variations, Arch. Rational. Mech. Anal. 86 (1984), 125–145.
  • DiBenedetto, E., Degenerate Parabolic Equations, Springer-Verlag, Berlin-Heidelberg-New York, 1993.
  • Iwaniec, T., p-harmonic tensors and quasiregular mappings, Ann. of Math. 136 (1992), 589–624.
  • Iwaniec, T. and Sbordone, C., Weak minima of variational integrals, J. Reine Angew. Math. 454 (1994), 143–161.
  • Kilpeläinen, T. and Lindqvist, P., On the Dirichlet boundary value problem for a degenerate parabolic equation, Siam J. Math. Anal. 27 (1996), 661–683.
  • Kinnunen, J. and Lewis, J. L., Higher integrability for parabolic systems of p-Laplacian type, Duke Math. J. 102 (2000), 253–271.
  • Lewis, J. L., On very weak solutions to certain elliptic systems, Comm. Partial Differential Equations 18 (1993), 1515–1537.
  • Meyers, N. G., An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1963), 189–206.
  • Meyers, N. G. and Elcrat, A., Some results on regularity for solutions of nonlinear elliptic systems and quasi-regular functions, Duke Math. J. 42 (1975), 121–136.
  • Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970.