Arkiv för Matematik

  • Ark. Mat.
  • Volume 30, Number 1-2 (1992), 283-295.

A Riesz basis for Bargmann-Fock space related to sampling and interpolation

K. Gröchenig and D. Walnut

Full-text: Open access

Abstract

It is shown that the Bargmann-Fock spaces of entire functions, Ap (C), p≧1 have a bounded unconditional basis of Wilson type [DJJ] which is closely related to the reproducing kernel. From this is derived a new sampling and interpolation result for these spaces.

Note

Partially supported by grant AFOSR 90-0311.

Article information

Source
Ark. Mat. Volume 30, Number 1-2 (1992), 283-295.

Dates
Received: 12 April 1991
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.afm/1485898070

Digital Object Identifier
doi:10.1007/BF02384875

Mathematical Reviews number (MathSciNet)
MR1289756

Zentralblatt MATH identifier
0777.46029

Rights
1992 © Institut Mittag-Leffler

Citation

Gröchenig, K.; Walnut, D. A Riesz basis for Bargmann-Fock space related to sampling and interpolation. Ark. Mat. 30 (1992), no. 1-2, 283--295. doi:10.1007/BF02384875. http://projecteuclid.org/euclid.afm/1485898070.


Export citation

References

  • Auslander, L. and Tolimieri, R., Radar Ambiguity functions and group theory, SIAM J. Math. Anal. 1 (1979), 847–897.
  • Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform I., Comm. Pure Appl. Math. 14 (1961), 187–214.
  • Daubechies, I., The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), 961–1005.
  • Daubechies, I. and Grossman, A., Frames in the Bargmann space of entire functions, Comm. Pure Appl. Math. 41 (1985), 151–164.
  • Daubechies, I., Grossmann, A. and Meyer, Y., Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271–1283.
  • Daubechies, I., Jaffard, S. and Journé, J.-L., A simple Wilson basis with exponential decay, SIAM J. Math. Anal., 22 (1991), 554–572.
  • Duffin, R. J. and Schaeffer, A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366.
  • Feichtinger, H., Atomic decompositions of modulation spaces, Rocky Mountain J. Math. 19 (1989), 113–125.
  • Feichtinger, H. and Gröchenig, K., A unified approach to atomic decompositions through integrable group representations, Function Spaces and Applications, M. Cwikel et al., eds., Lecture Notes in Math. 1302, Springer-Verlag, Berlin, New York, 1988, pp. 52–73.
  • Feichtinger, H. and Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86 (1989), 307–340.
  • Feichtinger, H. and Gröchenig, K., Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. f. Math. 108 (1989), 129–148.
  • Feichtinger, H., Gröchenig, K. and Walnut, D., Wilson Bases in Modulation Spaces, Math. Nachr. 155 (1992), 7–17.
  • Folland, G., Harmonic Analysis on Phase Space, Annals of Math. Studies No. 122, Princeton Univ. Press, Princeton, 1989.
  • Gabor, D., Theory of communications, J. Inst. Elec. Eng. (London)93 (1946), 429–457.
  • Gröchenig, K., Describing functions: Atomic decompositions vs. frames, Monatsh. Math. 112 (1991), 1–41.
  • Heil, C. and Walnut, D., Continuous and discrete wavelet transforms, SIAM Review 31 (1989), 628–666.
  • Janson, S., Peetre, J. and Rochberg, R., Hankel forms on the Fock space, Rev. Mat. Iberoam. 3 (1987), 61–138.
  • Janssen, A. J. E. M., Bargmann transform, Zak transform, and coherent states, J. Math. Phys. 23 (1982), 720–731.
  • Janssen, A. J. E. M., The Zak transform: a signal transform for sampled time-continuous signals, Philips J. Res. 43 (1988), 23–69.
  • Janssen, A. J. E. M., Gabor representations of generalized functions, J. Math. Appl. 80 (1981), 377–394.
  • Rainville, E., Special Functions, Chelsea Pub. Co., New York, 1960.
  • Seip, K. and Wallstén, R., Sampling and interpolation in the Bargmann-Fock space, preprint, Institut Mittag-Leffler.
  • Zak, J., Finite translations in solid state physics, Phys. Rev. Lett. 19 (1967), 1385–1397.
  • Zygmund, A., Trigonometric Series, Vol. I, Cambridge Univ. Press, 1959.