Arkiv för Matematik

  • Ark. Mat.
  • Volume 30, Number 1-2 (1992), 149-163.

On some Lp-estimates for hyperbolic equations

Mitsuru Sugimoto

Full-text: Open access

Article information

Source
Ark. Mat. Volume 30, Number 1-2 (1992), 149-163.

Dates
Received: 28 May 1990
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.afm/1485898062

Digital Object Identifier
doi:10.1007/BF02384867

Zentralblatt MATH identifier
0764.35057

Rights
1992 © Institut Mittag-Leffler

Citation

Sugimoto, Mitsuru. On some L p -estimates for hyperbolic equations. Ark. Mat. 30 (1992), no. 1-2, 149--163. doi:10.1007/BF02384867. http://projecteuclid.org/euclid.afm/1485898062.


Export citation

References

  • Beals, M., Lp boundedness of Fourier integral operators, Mem. Amer. Math. Soc. 264 (1982).
  • Bergh, J. and Löfström, J., Interpolation spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
  • Fefferman, C. and Stein, E. M., Hp spaces of several variables, Acta Math. 129 (1972), 137–193.
  • Flanders, H., Differential forms with applications to the physical sciences, Academic Press, New York, London, 1963.
  • Hirschman, I. I., On multiplier transformations, Duke Math. J. 26 (1959), 221–242.
  • Hörmander, L., Fourier integral operators, I, Acta Math. 127 (1971), 79–183.
  • Kobayashi, S. and Nomizu, K., Foundations of differential geometry, II, Interscience, New York, 1969.
  • Latter, R. H., A characterization of Hp(Rn) in terms of atoms, Studia Math. 62 (1978), 93–101.
  • Marshall, E., Estimates for solutions of wave equations with vanishing curvature, Canad. J. Math. 37 (1985), 1176–1200.
  • Miyachi, A., On some Fourier multipliers for Hp (Rn), J. Fac. Sci. Univ. Tokyo Sect. 1A. Math. 27 (1980), 157–179.
  • Miyachi, A., On some estimates for the wave equation in Lp and Hp,, 331–354.
  • Peral, J., Lp estimates for the wave equation, J. Funct. Anal. 36 (1980), 114–145.
  • Seeger, A., Sogge, C. D. and Stein, E. M., Regularity properties of Fourier integral operators, Ann. of Math. 134 (1991), 231–251.
  • Sjöstrand, S., On the Riesz means of the solutions of the Schrödinger equation, Ann. Scuola Norm. Sup. Pisa 24 (1970), 331–348.
  • Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970.
  • Triebel, H., Theory of function spaces, Birkhäuser, Basel, Boston, 1983.
  • Wainger, S., Special trigonometric series in k-dimensions, Mem. Amer. Math. Soc. 59 (1965).