Arkiv för Matematik

  • Ark. Mat.
  • Volume 24, Number 1-2 (1985), 221-275.

On spaces of maps from Riemann surfaces to Grassmannians and applications to the cohomology of moduli of vector bundles

Frances Kirwan

Full-text: Open access

Article information

Source
Ark. Mat. Volume 24, Number 1-2 (1985), 221-275.

Dates
Received: 21 May 1984
Revised: 11 November 1985
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.afm/1485897482

Digital Object Identifier
doi:10.1007/BF02384399

Zentralblatt MATH identifier
0625.14026

Rights
1986 © Institut Mittag Leffler

Citation

Kirwan, Frances. On spaces of maps from Riemann surfaces to Grassmannians and applications to the cohomology of moduli of vector bundles. Ark. Mat. 24 (1985), no. 1-2, 221--275. doi:10.1007/BF02384399. http://projecteuclid.org/euclid.afm/1485897482.


Export citation

References

  • Atiyah, M. F. and Bott, R., “The Yang-Mills equations over Riemann surfaces”, Phil. Trans. R. Soc. Lond. A 308 (1982), 523–615.
  • Dold, A., Lectures on algebraic topoly, Grund. der Math. Wiss. Band 200, Springer-Verlag (1972).
  • Guest, M. A., “Topology of the space of absolute minima of the energy function”, Amer. J. Math. 106 (1984), 21–42.
  • Hartman, P., Ordinary differential equations, Wiley, New York (1964).
  • Harder, G. and Narasimhan, M. S., “On the cohomology groups of moduli spaces of vector bundles on curves”, Math. Ann. 212 (1975), 215–248.
  • Hilton, P. and Reitberg, J., “On the Zeeman comparison theorem for the homology of quasi-nilpotent fibrations”, Quart. J. Math. 27 (1976), 433–444.
  • Kirwan, F. C., Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes 31, Princeton University Press (1985).
  • Lojasiewicz, S., “Triangulation of semi-analytic sets”, Annali Scu. Norm. Sup. Pisa, Sc. Fis. Mat. Ser. 3, v. 18, fast 4, 449–474 (1964).
  • McDuff, D., “Configuration spaces of positive and negative particles”, Topology, 14, (1975), 91–107.
  • McDuff, D. and Segal, G. B., “Homology fibrations and the ‘group completion’ theorem”, Invent. Math. 31 (1976), 279–284.
  • Milnor, J., Singular points of complex hypersurfaces, Ann. of Math. Studies 61, P.U.P. (1968).
  • Mumford, D., Geometric invariant theory, Springer-Verlag, New York (1965).
  • Morse, M., The calculus of variations in the large, A.M.S. Colloq. Publ. 18 (1934).
  • Narasimhan, M. S. and Ramanan, S., “Moduli of vector bundles on a compact Riemann surface”, Ann. Math. 89 (1969), 14–51.
  • Newstead, P. E., Introduction to moduli problems and orbit spaces, Tata Inst. Lectures 51, Springer-Verlag, Heidelberg (1978).
  • Segal, G. B., “The topology of spaces of rational functions”, Acta Math. 143 (1979), 39–72.
  • Sehadri, C. S., “Space of unitary vector bundles on a compact Riemann surface”, Ann. Math. 85, (1967), 303–336.
  • Spanier, E. H., Algebraic Topology, McGraw Hill (1966).
  • Verdier, J-L. and Le Potier, J., editors, Module de fibrés stables sur les courbes algébriques, Notes de l'Ecole Norm. Sup., Printemps 1983, Progress in Math. 54, Birkhäuser (1985).
  • Zeeman, E. C., “A proof of the comparison theorem for spectral sequences”, Proc. Camb. Phil. Soc. 53 (1957), 57–62.