Arkiv för Matematik

  • Ark. Mat.
  • Volume 20, Number 1-2 (1982), 293-300.

The Franklin system is an unconditional basis in H1

P. Wojtaszczyk

Full-text: Open access

Article information

Source
Ark. Mat. Volume 20, Number 1-2 (1982), 293-300.

Dates
Received: 10 February 1980
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.afm/1485896985

Digital Object Identifier
doi:10.1007/BF02390514

Zentralblatt MATH identifier
0534.46038

Rights
1982 © Institut Mittag Leffler

Citation

Wojtaszczyk, P. The Franklin system is an unconditional basis in H 1 . Ark. Mat. 20 (1982), no. 1-2, 293--300. doi:10.1007/BF02390514. http://projecteuclid.org/euclid.afm/1485896985.


Export citation

References

  • Bočkariov, S. V., Existence of a basis in the space of functions analytic in the disc and some properties of the Franklin system, Mat. Sb. N.S. 95 (137) (1974) pp. 3–18 -Math USSR Sbornik 24 (1974) pp. 1–16.
  • Carleson, L., N explicit unconditional basis in H1, Bull. des Sciences Mathematiques, 104 (1980) pp. 405–416.
  • Ciesielski, Z., Properties of the orthonormal Franklin system, Studia Math. 23 (1963) pp. 141–157).
  • Ciesielski, Z., Properties of the orthonormal Franklin system II, Studia Math. 27 (1966) pp. 289–323).
  • Coifman R. R. and Weiss, G., Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977) pp. 569–645.
  • Kwapień, S. and Pelczyński, A., Some linear topological properties of the Hardy spaces Hp, Compositio Math. 33 (1976) pp. 261–288.
  • Lindenstrauss, J. and Pelcyzyśki, A., Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971) pp. 225–249.
  • Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces I, Springer-Verlag 1977.
  • Mathematical developments arising from Hilbert problems, Proc. of Symp. in pure math. XXVIII, Rhode Island 1976.
  • Maurey, B. Isomorphismes entre espaces H1, Acta Math. 145 (1980) pp. 79–120
  • Pelczyśki, A. and Wojtaszczyk, P., Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 50 (1971) pp. 91–108.
  • Sarason, D., Function theory on the unite circle, Notes from conference in Blacksburg, Virginia, 1978.
  • Stein, E., Classes Hp, multiplicateurs et fonctions de Littlewood-Paley, C. R. Acad. Sci. Paris Serie A-B, 263 (1966) A716–719.