Open Access
2015 Solutions of nonlinear elliptic problems with lower order terms
Youssef Akdim, Abdelmoujib Benkirane, Mostafa El Moumni
Ann. Funct. Anal. 6(1): 34-53 (2015). DOI: 10.15352/afa/06-1-4

Abstract

We give an existence result for strongly nonlinear elliptic equations of the form \[ -{\rm div}(a(x,u,\nabla u))+g(x,u,\nabla u)+H(x,\nabla u) = \mu\ \text{in}\ \Omega, \] where the right hand side belongs to $L^1(\Omega)+W^{-1,p'}(\Omega)$ and $- {\rm div}(a(x,u,\nabla u))$ is a Leray--Lions type operator with growth $|\nabla u|^{p-1}$ in $\nabla u$. The critical growth condition on $g$ is with respect to $\nabla u$ and no growth condition with respect to $u$, while the function $H(x,\nabla u)$ grows as $|\nabla u|^{p-1}$.

Citation

Download Citation

Youssef Akdim. Abdelmoujib Benkirane. Mostafa El Moumni. "Solutions of nonlinear elliptic problems with lower order terms." Ann. Funct. Anal. 6 (1) 34 - 53, 2015. https://doi.org/10.15352/afa/06-1-4

Information

Published: 2015
First available in Project Euclid: 19 December 2014

zbMATH: 1319.35038
MathSciNet: MR3297786
Digital Object Identifier: 10.15352/afa/06-1-4

Subjects:
Primary: 35B45
Secondary: 35J60 , 46E35

Keywords: a priori estimates , nonlinear elliptic equation , Sobolev Spaces

Rights: Copyright © 2015 Tusi Mathematical Research Group

Vol.6 • No. 1 • 2015
Back to Top