Abstract
Let $X$ be a complex Banach space and let $\mathcal{L}(X)$ be the Banach algebra of all bounded linear operators on $X$. We characterize surjective linear maps $\phi :\mathcal{L}(X) \rightarrow \mathcal{L}(X)$ compressing or depressing any one of the range, the hyper-range, the analytic core and the kernel.
Citation
M'hamed Elhodaibi. Ali Jaatit. "On linear maps compressing or depressing certain subspaces." Ann. Funct. Anal. 4 (2) 48 - 57, 2013. https://doi.org/10.15352/afa/1399899524
Information