Acta Mathematica

On Landau damping

Clément Mouhot and Cédric Villani

Full-text: Open access


Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp “deflection” estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions.


Dedicated to Vladimir Arnold and Carlo Cercignani.


AMS Subject Classification: 82C99 (85A05, 82D10).

Article information

Acta Math. Volume 207, Number 1 (2011), 29-201.

Received: 10 December 2009
Revised: 10 July 2011
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

2011 © Institut Mittag-Leffler


Mouhot, Clément; Villani, Cédric. On Landau damping. Acta Math. 207 (2011), no. 1, 29--201. doi:10.1007/s11511-011-0068-9.

Export citation


  • A khiezer, A., A khiezer, I., P olovin, R., S itenko, A. & S tepanov, K., Plasma Electrodynamics. Vol. I: Linear Theory. Vol. II: Non-Linear Theory and Fluctuations. Pergamon Press, Oxford–New York, 1975.
  • A linhac, S. & G érard, P., Pseudo-Differential Operators and the Nash–Moser Theorem. Graduate Studies in Mathematics, 82. Amer. Math. Soc., Providence, RI, 2007.
  • B ach, V., F röhlich, J. & S igal, I. M., Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Comm. Math. Phys., 207 (1999), 249–290.
  • B ackus, G., Linearized plasma oscillations in arbitrary electron velocity distributions. J. Math. Phys., 1 (1960), 178–191; erratum, 559.
  • B alescu, R., Statistical Mechanics of Charged Particles. Monographs in Statistical Physics and Thermodynamics, 4. Wiley, London–New York–Sydney, 1963.
  • B att, J. & R ein, G., Global classical solutions of the periodic Vlasov–Poisson system in three dimensions. C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 411–416.
  • B elmont, G., M ottez, F., C hust, T. & H ess, S., Existence of non-Landau solutions for Langmuir waves. Phys. of Plasmas, 15 (2008), 052310, 1–14.
  • B enachour, S., Analyticité des solutions des équations de Vlasov–Poisson. Ann. Sc. Norm. Super. Pisa Cl. Sci., 16 (1989), 83–104.
  • B inney, J. & T remaine, S., Galactic Dynamics. First edition. Princeton Series in Astrophysics. Princeton University Press, Princeton, 1987.
  • Galactic Dynamics. Second edition. Princeton Series in Astrophysics. Princeton University Press, Princeton, 2008.
  • B ouchet, F., Stochastic process of equilibrium fluctuations of a system with long-range interactions. Phys. Rev. E, 70 (2004), 036113, 1–4.
  • B ourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal., 3 (1993), 107–156.
  • C aglioti, E. & M affeI, C., Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys., 92 (1998), 301–323.
  • C asE, K. M., Plasma oscillations. Ann. Physics, 7 (1959), 349–364.
  • C havanis, P. H., Quasilinear theory of the 2D Euler equation. Phys. Rev. Lett., 84:24 (2000), 5512–5515.
  • C havanis, P. H., S ommeria, J., & R obert, R., Statistical mechanics of two-dimensional vortices and collisionless stellar systems. Astrophys. J., 471 (1996), 385–399.
  • C hemin, J. Y., Le système de Navier–Stokes incompressible soixante dix ans après Jean Leray, in Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr., 9, pp. 99–123. Soc. Math. France, Paris, 2004.
  • C hierchia, L., A. N. Kolmogorov’s 1954 paper on nearly-integrable Hamiltonian systems. A comment on: “On conservation of conditionally periodic motions for a small change in Hamilton’s function” [Dokl. Akad. Nauk SSSR, 98 (1954), 527–530]. Regul. Chaotic Dyn., 13 (2008), 130–139.
  • C hust, T., B elmont, G., M ottez, F. & H ess, S., Landau and non-Landau linear damping: Physics of the dissipation. Phys. Plasmas, 16 (2009), 092104, 13 pp.
  • D egond, P., Spectral theory of the linearized Vlasov–Poisson equation. Trans. Amer. Math. Soc., 294 (1986), 435–453.
  • D ereziński, J. & G érard, C., Scattering Theory of Classical and Quantum N-Particle Systems. Texts and Monographs in Physics. Springer, Berlin–Heidelberg, 1997.
  • D esvillettes, L. & V illani, C., On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker–Planck equation. Comm. Pure Appl. Math., 54 (2001), 1–42.
  • E lskens, Y., Irreversible behaviours in Vlasov equation and many-body Hamiltonian dynamics: Landau damping, chaos and granularity, in Topics in Kinetic Theory, Fields Inst. Commun., 46, pp. 89–108. Amer. Math. Soc., Providence, RI, 2005.
  • E lskens, Y. & E scande, D. F., Microscopic Dynamics of Plasmas and Chaos. Institute of Physics, Bristol, 2003.
  • E scande, D. F., Wave-particle interaction in plasmas: a qualitative approach, in Long-Range Interacting Systems, pp. 13–14, 469–506. Oxford University Press, Oxford, 2010.
  • F athi, A., Weak KAM Theory in Lagrangian Dynamics. Cambridge University Press, Cambridge, 2010.
  • F ilbet, F., Numerical simulations. Available online at
  • F ridman, A. M. & P olyachenko, V. L., Physics of Gravitating Systems. Vol. I: Equilibrium and Stability. Vol. II: Nonlinear Collective Processes. Astrophysical Applications. Springer, New York, 1984.
  • G angbo, W. & T udorascu, A., Lagrangian dynamics on an infinite-dimensional torus; a weak KAM theorem. Adv. Math., 224 (2010), 260–292.
  • G lassey, R. & S chaeffer, J., Time decay for solutions to the linearized Vlasov equation. Transport Theory Statist. Phys., 23 (1994), 411–453.
  • — On time decay rates in Landau damping. Comm. Partial Differential Equations, 20 (1995), 647–676.
  • G ould, R., O’N eil, T. & M almberg, J., Plasma wave echo. Phys. Rev. Letters, 19:5 (1967), 219–222.
  • G ross, L., Logarithmic Sobolev inequalities. Amer. J. Math., 97 (1975), 1061–1083.
  • G uo, Y. & R ein, G., A non-variational approach to non-linear stability in stellar dynamics applied to the King model. Comm. Math. Phys., 271 (2007), 489–509.
  • G uo, Y. & S trauss, W. A., Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 12 (1995), 339–352.
  • ter H aar, D., Men of Physics: L. D. Landau. Selected Reading of Physics, 2. Pergamon Press, Oxford–New York, 1969.
  • H auray, M. & J abin, P.E., N-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal., 183 (2007), 489–524.
  • H ayes, J.N., On non-Landau damped solutions to the linearized Vlasov equation. Nuovo Cimento, 10:30 (1963), 1048–1063.
  • H eath, R., G amba, I., M orrison, P. & M ichler, C., A discontinuous Galerkin method for the Vlasov–Poisson system. To appear in J. Comput. Phys.
  • H orst, E., On the asymptotic growth of the solutions of the Vlasov–Poisson system. Math. Methods Appl. Sci., 16 (1993), 75–86.
  • H wang, H. J. & V elázquez, J. J. L., On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem. Indiana Univ. Math. J., 58:6 (2009), 2623–2660.
  • I sichenko, M., Nonlinear Landau damping in collisionless plasma and inviscid fluid. Phys. Rev. Lett., 78:12 (1997), 2369–2372.
  • J abin, P.E., Averaging lemmas and dispersion estimates for kinetic equations. Riv. Mat. Univ. Parma, 1 (2009), 71–138.
  • K aganovich, I.D., Effects of collisions and particle trapping on collisionless heating. Phys. Rev. Lett., 82:2 (1999), 327–330.
  • van K ampen, N. G., On the theory of stationary waves in plasmas. Physica, 21 (1955), 949–963.
  • K andrup, H., Violent relaxation, phase mixing, and gravitational Landau damping. Astrophys. J., 500 (1998), 120–128.
  • K iessling, M. K.-H., The “Jeans swindle”: a true story—mathematically speaking. Adv. in Appl. Math., 31 (2003), 132–149.
  • — Personal communication, 2009.
  • K rall, N. & T rivelpiece, A., Principles of Plasma Physics. San Francisco Press, San Francisco, 1986.
  • K uksin, S. B., Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture Notes in Mathematics, 1556. Springer, Berlin–Heidelberg, 1993.
  • Analysis of Hamiltonian PDEs. Oxford Lecture Series in Mathematics and its Applications, 19. Oxford University Press, Oxford, 2000.
  • L andau, L., On the vibrations of the electronic plasma. Akad. Nauk SSSR. Zhurnal Eksper. Teoret. Fiz., 16 (1946), 574–586 (Russian); English translation in Acad. Sci. USSR. J. Phys., 10 (1946), 25–34. Reproduced in [36].(19) There is a misprint in formula (17) of this reference (p. 104): replace e(ka)2/2 by e1/2(ka)2.
  • L emou, M., M éhats, F. & R aphaël, P., Orbital stability of spherical galactic models. To appear in Invent. Math.
  • L ifshitz, E. M. & P itaevskiĭ, L.P., Course of Theoretical Physics [“Landau–Lifshits”]. Vol. 10. Nauka, Moscow, 1979. English translation in Pergamon International Library of Science, Technology, Engineering and Social Studies. Pergamon Press, Oxford–New York, 1981.
  • L in, Z. & Z eng, C., BGK waves and non-linear Landau damping. To appear in Comm. Math. Phys.
  • L ions, P. L. & P erthame, B., Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math., 105 (1991), 415–430.
  • L ynden-B ell, D., The stability and vibrations of a gas of stars. Mon. Not. R. Astr. Soc., 124 (1962), 279–296.
  • — Statistical mechanics of violent relaxation in stellar systems. Mon. Not. R. Astr. Soc., 136 (1967), 101–121.
  • M almberg, J. & W harton, C., Collisionless damping of electrostatic plasma waves. Phys. Rev. Lett., 13:6 (1964), 184–186.
  • M almberg, J., W harton, C., G ould, R. & O’N eil, T., Plasma wave echo experiment. Phys. Rev. Letters, 20:3 (1968), 95–97.
  • M anfredi, G., Long-time behavior of non-linear Landau damping. Phys. Rev. Lett., 79:15 (1997), 2815–2818.
  • M archioro, C. & P ulvirenti, M., Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences, 96. Springer, New York, 1994.
  • M aslov, V. P. & F edoryuk, M.V., The linear theory of Landau damping. Mat. Sb., 127(169) (1985), 445–475, 559 (Russian); English translation in Math. USSR–Sb., 55 (1986), 437–465.
  • M edvedev, M. V., D iamond, P. H., R osenbluth, M. N. & S hevchenko, V. I., Asymptotic theory of non-linear Landau damping and particle trapping in waves of finite amplitude. Phys. Rev. Lett., 81:26 (1998), 5824–5827.
  • M iller, J., Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett., 65:17 (1990), 2137–2140.
  • M orrison, P. J., Hamiltonian description of Vlasov dynamics: action-angle variables for the continuous spectrum, in Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998), Transport Theory Statist. Phys., 29, pp. 397–414. Taylor & Francis, Philadelphia, PA, 2000.
  • M oser, J., A rapidly convergent iteration method and non-linear differential equations. II. Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 499–535.
  • — Recollections, in The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., 24, pp. 19–21. Amer. Math. Soc., Providence, RI, 1999.
  • M ouhot, C. & V illani, C., Landau damping. J. Math. Phys., 51 (2010), 015204, 7.
  • N ash, J., The imbedding problem for Riemannian manifolds. Ann. of Math., 63 (1956), 20–63.
  • N ekhoroshev, N. N., An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Uspekhi Mat. Nauk, 32 (1977), 5–66, 287 (Russian); English translation in Russian Math. Surveys, 32 (1977), 1–65.
  • — An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. II. Trudy Sem. Petrovsk., (1979), 5–50 (Russian); English translation in Topics in Modern Mathematics, pp. 1–58, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1985.
  • N irenberg, L., An abstract form of the nonlinear Cauchy–Kowalewski theorem. J. Differential Geom., 6 (1972), 561–576.
  • N ishida, T., A note on a theorem of Nirenberg. J. Differential Geom., 12 (1977), 629–633 (1978).
  • O’N eil, T. M., Collisionless damping of nonlinear plasma oscillations. Phys. Fluids, 8 (1965), 2255–2262.
  • O’N eil, T. M. & C oroniti, F.V., The collisionless nature of high-temperature plasmas. Rev. Modern Phys., 71:2 (1999), S404–S410.
  • P enrose, O., Electrostatic instability of a non-Maxwellian plasma. Phys. Fluids, 3 (1960), 258–265.
  • P faffelmoser, K., Global classical solutions of the Vlasov–Poisson system in three dimensions for general initial data. J. Differential Equations, 95 (1992), 281–303.
  • R ein, G., Personal communication, 2008.
  • R obert, R., Statistical mechanics and hydrodynamical turbulence, in Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vol. 2, pp. 1523–1531. Birkhäuser, Basel, 1995.
  • R yutov, D. D., Landau damping: half a century with the great discovery. Plasma Phys. Control. Fusion, 41 (1999), A1–A12.
  • S áenz, A. W., Long-time behavior of the electric potential and stability in the linearized Vlasov theory. J. Math. Phys., 6 (1965), 859–875.
  • S aint R aymond, X., A simple Nash–Moser implicit function theorem. Enseign. Math., 35 (1989), 217–226.
  • S chaeffer, J., Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Comm. Partial Differential Equations, 16 (1991), 1313–1335.
  • S offer, A. &W einstein, M. I., Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys., 133 (1990), 119–146.
  • S pentzouris, L., O stiguy, J. & C olestock, P., Direct measurement of diffusion rates in high energy synchrotrons using longitudinal beam echoes. Phys. Rev. Lett., 76:4 (1996), 620–623.
  • S tahl, B., K iessling, M. K.-H. & S chindler, K., Phase transitions in gravitating systems and the formation of condensed objects. Planet. Space Sci., 43 (1995), 271–282.
  • S tix, T. H., The Theory of Plasma Waves. McGraw-Hill, New York, 1962.
  • T remaine, S., H énon, M. & L ynden-B ell, D., H-functions and mixing in violent relaxation. Mon. Not. R. Astr. Soc., 219 (1986), 285–297.
  • T urkington, B., Statistical equilibrium measures and coherent states in two-dimensional turbulence. Comm. Pure Appl. Math., 52 (1999), 781–809.
  • V ekstein, G. E., Landau resonance mechanism for plasma and wind-generated water waves. Amer. J. Phys., 66:10 (1998), 886–892.
  • V illani, C., A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, Vol. I, pp. 71–305. North-Holland, Amsterdam, 2002.
  • — Hypocoercivity. Mem. Amer. Math. Soc., 202 (2009), iv+141.
  • W iechen, H., Z iegler, H. J. & S chindler, K., Relaxation of collisionless self-gravitating matter – the lowest energy state. Mon. Not. R. Astr. Soc., 232 (1988), 623–646.
  • Z hou, T., G uo, Y. & S hu, C.-W., Numerical study on Landau damping. Phys. D, 157 (2001), 322–333.