Acta Mathematica

Teichmüller geodesics of infinite complexity

Curtis T. Mcmullen

Full-text: Open access

Note

Research partially supported by the NSF.

Article information

Source
Acta Math. Volume 191, Number 2 (2003), 191-223.

Dates
Received: 30 September 2002
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485891606

Digital Object Identifier
doi:10.1007/BF02392964

Zentralblatt MATH identifier
1131.37052

Rights
2003 © Institut Mittag-Leffler

Citation

Mcmullen, Curtis T. Teichmüller geodesics of infinite complexity. Acta Math. 191 (2003), no. 2, 191--223. doi:10.1007/BF02392964. http://projecteuclid.org/euclid.acta/1485891606.


Export citation

References

  • [Ar] Arnoux, P., Échanges d’intervalles et flots sur les surfaces, in Ergodic Theory (Les Plans-sur-Bex, 1980), pp. 5–38. Monograph. Enseign. Math., 29. Univ. Genève, Geneva, 1981.
  • [Be] Bers, L., An extremal problem for quasiconformal maps and a theorem by Thurston. Acta Math., 141 (1978), 73–98.
  • [Bo] Boshernitzan, M. D., Rank two interval exchange transformations. Ergodic Theory Dynam. Systems, 8 (1988), 379–394.
  • [Ca] Calta, K., Veech surfaces and complete periodicity in genus 2. Preprint, 2002.
  • [CFS] Cornfeld, I. P., Fomin, S. V. & Sinaî, Ya. G., Ergodic Theory. Grundlehren Math. Wiss., 245. Springer-Verlag, New York, 1982.
  • [EO] Eskin, A. & Okounkov, A., Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials. Invent. Math., 145 (2001), 59–103.
  • [FLP] Fathi, A., Laudenbach, F. & Poénaru, V., Travaux de Thurston sur les surfaces. Astérisque, 66–67. Soc. Math. France, Paris, 1979.
  • [Ga] Gardiner, F. P., Teichmüller Theory and Quadratic Differentials. Wiley, New York, 1987.
  • [GJ] Gutkin, E. & Judge, C., Affine mappings of translation surfaces: geometry and arithmetic. Duke Math. J., 103 (2000), 191–213.
  • [HW] Hardy, G. H. & Wright, E. M., An Introduction to the Theory of Numbers, 5th edition. Oxford Univ. Press, New York, 1979.
  • [HM] Hubbard, J. & Masur, H., Quadratic differentials and foliations. Acta Math., 142 (1979), 221–274.
  • [HS] Hubert, P. & Schmidt, T. A., Infinitely generated Veech groups. Preprint, 2002.
  • [Ke] Keane, M., Interval exchange transformations. Math. Z., 141 (1975), 25–31.
  • [KS] Kenyon, R. & Smillie, J., Billiards on rational-angled triangles. Comment. Math. Helv., 75 (2000), 65–108.
  • [Ko] Kontsevich, M., Lyapunov exponents and Hodge theory, in The Mathematical Beauty of Physics (Saclay, 1996), pp. 318–332. Adv. Ser. Math. Phys., 24. World Sci. Publishing, River Edge, NJ, 1997.
  • [Le] Leutbecher, A., Über die Heckeschen Gruppen G(λ), II. Math. Ann., 211 (1974), 63–86.
  • [Mc] McMullen, C. T., Billiards and Teichmüller curves on Hilbert modular surfaces. J. Amer. Math. Soc., 16 (2003), 857–885.
  • [Man] Mañé, R., Ergodic Theory and Differentiable Dynamics. Ergeb. Math. Grenzgeb. (3), 8. Springer-Verlag, Berlin, 1987.
  • [Mas1] Masur, H., Transitivity properties of the horocyclic and geodesic flows on moduli space. J. Analyse Math., 39 (1981), 1–10.
  • [Mas2]—, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential. Duke Math. J., 66 (1992), 387–442.
  • [MT] Masur, H. & Tabachnikov, S., Rational billiards and flat structures, in Handbook of Dynamical Systems, Vol. 1A, pp. 1015–1089. North-Holland, Amsterdam, 2002.
  • [Mu] Mumford, D., A remark on Mahler’s compactness theorem. Proc. Amer. Math. Soc., 28 (1971), 289–294.
  • [Se] Seibold, F., Zahlentheoretische Eigenschaften der Heckeschen Gruppen G(λ) und verwandter Transformationsgruppen. Dissertation, Technischen Universität München, 1985.
  • [St] Strebel, K., Quadratic Differentials. Ergeb. Math. Grenzgeb. (3), 5. Springer-Verlag, Berlin, 1984.
  • [Th] Thurston, W. P., On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417–431.
  • [V1] Veech, W. A., The metric theory of interval exchange transformations, III. The Sah-Arnoux-Fathi invariant. Amer. J. Math., 106 (1984), 1389–1422.
  • [V2]—, The Teichmüller geodesic flow. Ann. of Math. (2), 124 (1986), 441–530.
  • [V3]—, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards. Invent. Math., 97 (1989), 553–583.
  • [V4]—, The billiard in a regular polygon. Geom. Funct. Anal., 2 (1992), 341–379.
  • [Vo] Vorobets, Ya. B., Plane structures and billiards in rational polygons: the Veech alternative. Uspekhi Mat. Nauk, 51:5 (311) (1996), 3–42 (Russian); English translation in Russian Math. Surveys, 51 (1996), 779–817.
  • [Wa] Ward, C. C., Calculation of Fuchsian groups associated to billiards in a rational triangle. Ergodic Theory Dynam. Systems, 18 (1998), 1019–1042.