Acta Mathematica

The colored Jones polynomials and the simplicial volume of a knot

Hitoshi Murakami and Jun Murakami

Full-text: Open access

Article information

Source
Acta Math. Volume 186, Number 1 (2001), 85-104.

Dates
Received: 26 May 1999
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485891370

Digital Object Identifier
doi:10.1007/BF02392716

Zentralblatt MATH identifier
0983.57009

Rights
2001 © Institut Mittag-Leffler

Citation

Murakami, Hitoshi; Murakami, Jun. The colored Jones polynomials and the simplicial volume of a knot. Acta Math. 186 (2001), no. 1, 85--104. doi:10.1007/BF02392716. http://projecteuclid.org/euclid.acta/1485891370.


Export citation

References

  • Akutsu, Y., Deguchi, T., & Ohtsuki, T., Invariants of colored links., J. Knot. Theory Ramifications, 1 (1992), 161–184.
  • Bar-Natan, D. & Garoufalidis, S., On the Melvin-Morton-Rozansky conjecture. Invent. Math., 125 (1996), 103–133.
  • Burau, W., Kennzeichnung der Schlauchknoten. Abh. Math. Sem. Univ. Hambrug, 9 (1932), 125–133.
  • Burde, G., & Zieschang, H., Knots de Gruyter Stud. Math., 5, de Gruyter, Berlin, 1985
  • Deguchi, T., On the new hierarchy of the colored braid matrices. J. Phys. Soc. Japan, 60 (1991), 3978–3979.
  • —, Miltivariable invariants of colored links generalizing the Alexander polynomial, in Proceedings of the Conference on Quantum Topology (Manhattan, KS, 1993), pp. 67–85. World Sci. Publishing, River Edge, NJ, 1994.
  • Drinfel'd, V. G., Quantum groups, in Proceedings of the International Congress of Mathematicians, Vols., 1, 2 (Berkeley, CA, 1986) pp. 798–820. Amer. Math. Soc., Providence, RI, 1987.
  • Gordon, C. McA., Dehn surgery and satellite knots., Trans. Amer. Math. Soc., 275 (1983), 687–708.
  • Gradshteyn, I. S. & Ryzhik, I. M., Table of Integrals, Series, and Products. Corrected and enlarged edition edited by Alan. Jeffrey. Incorporating the 4th edition edited by Yu. V. Geronimus and M. Yu. Tseytlin. Translated from the Russian. Academic Press, New York, 1980.
  • Gromov, M., Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math., 56 (1982), 5–99.
  • Jaco, W. H. & Shalen, P. B., Seifert Fibered Spaces in 3-manifolds. Mem. Amer. Math. Soc., 21 (220), Amer. Math. Soc., Providence, RI, 1979.
  • Johannson, K., Homotopy Equivalences of 3-manifolds with Boundaries. Lecture Notes in Math., 761. Springer-Verlag, Berlin, 1979.
  • Kashaev, R. M., A link invariant from quantum dilogarithm. Modern, Phys. Lett. A., 10 (1995), 1409–1418.
  • —, The hyperbolic volume of knots from the quantum dilogarithm. Lett. Math. Phys., 39 (1997), 269–275.
  • Kashaev, R. M. & Tirkkonen, O., Proof of the volume conjecture for torus knots. math. GT/9912210.
  • Kassel, C., Quantum Groups. Graduate Texts in Math., 155. Springer-Verlag, New York, 1995.
  • Kirby, R., Problems in low-dimensional topology, in Geometric Topology (Athens, GA, 1993), pp. 35–473. Amer. Math. Soc., Providence, RI, 1997.
  • Kirby, R. & Melvin, P., The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl (2,C). Invent. Math., 105 (1991), 473–545.
  • Melvin, P. M. & Morton, H. R., The coloured Jones function. Comm. Math. Phys., 169 (1995), 501–520.
  • Morton, H. R., The coloured Jones function and Alexander polynomial for torus knots. Math. Proc. Cambridge Philos. Soc., 117 (1995), 129–135.
  • Murakami, J., The parallel version of polynomial invariants of links. Osaka J. Math., 26 (1989), 1–55.
  • —, A state model for the multivariable Alexander polynomial. Pacific J. Math., 157 (1993), 109–135.
  • Rosso, M. & Jones, V., On the invariants of torus knots derived from quantum groups. J. Knot Theory Ramifications, 2 (1993), 97–112.
  • Rozansky, L., A contribution of the trivial connection to the Jones polynomial and Witten's invariant of 3d manifolds, I; II. Comm. Math. Phys., 175 (1996). 275–296; 297–318.
  • Ruberman, D., Mutation and volumes of knots in S3. Invent. Math., 90 (1987), 189–215.
  • Soma, T., The Gromov invariant of links. Invent. Math., 64 (1981), 445–454.
  • Turaev, V. G., The Yang-Baxter equation and invariants of links. Invent. Math., 92 (1988), 527–553.
  • Vassiliev, V. A., Cohomology of knot spaces, in Theory of Singularities and Its Applications, pp. 23–69. Adv. Soviet Math., 1. Amer. Math. Soc., Providence, RI, 1990.