Acta Mathematica

Primes represented by x3+2y3

Heath-Brown

Full-text: Open access

Article information

Source
Acta Math. Volume 186, Number 1 (2001), 1-84.

Dates
Received: 29 April 1999
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485891369

Digital Object Identifier
doi:10.1007/BF02392715

Rights
2001 © Institut Mittag-Leffler

Citation

Heath-Brown. Primes represented by x 3 +2 y 3 . Acta Math. 186 (2001), no. 1, 1--84. doi:10.1007/BF02392715. http://projecteuclid.org/euclid.acta/1485891369.


Export citation

References

  • Daniel, S., On the divisor-sum problem for binary forms. J. Reine Angew. Math., 507 (1999), 107–129.
  • Friedlander, J. & Iwaniec, H., The polynomial X2+Y4 captures its primes. Ann. of Math., 148 (1998), 945–1040.
  • ——, Asymptotic sieve for primes. Ann. of Math., 148 (1998), 1041–1065.
  • Goldston, D. A., On Bombieri and Davenport's theorem concerning small gaps between primes. Mathematika, 39 (1992), 10–17.
  • Greaves, G. R. H., Large prime factors of binary forms. J. Number Theory, 3 (1971), 35–59.
  • Halberstam, H. & Richert, H.-E., Sieve Methods. London Math. Soc. Monographs, 4. Academic Press, London-New York, 1974.
  • Hardy, G. H. & Littlewood, J. E., Some problems of ‘Partitio Numerorum’; III: On the expression of a number as a sum of primes. Acta Math., 44 (1923), 1–70.
  • Heath-Brown, D. R., Diophantine approximation with square-free numbers. Math. Z., 187 (1984), 335–344.
  • —, The ternary Goldbach problem. Rev. Mat. Iberoamericana, 1 (1985), 45–59.
  • —, The number of primes in a short interval, J. Reine Angew. Math., 389 (1988), 22–63.
  • —, The solubility of diagonal cubic Diophantine equations. Proc. London Math. Soc. (3), 79 (1999), 241–259.
  • Hooley, C., On a problem of Hardy and Littlewood. Acta Arith., 79 (1997), 289–311.
  • Huxley, M. N., The large sieve inequality for algebraic number fields. Mathematika, 15 (1968), 178–187.
  • Iwaniec, H., Frimes represented by quadratic polynomials in two variables. Acta Arith., 24 (1974), 435–459.
  • Mitsui, T., Generalized prime number, theorem. Japan. J. Math., 26 (1956), 1–42.