Acta Mathematica

A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy

Fritz Gesztesy and Rudi Weikard

Full-text: Open access

Note

Based upon work supported by the US National Science Foundation under Grants DMS-9623121 and DMS-9401816.

Article information

Source
Acta Math. Volume 181, Number 1 (1998), 63-108.

Dates
Received: 27 May 1997
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485891166

Digital Object Identifier
doi:10.1007/BF02392748

Mathematical Reviews number (MathSciNet)
MR1654775

Zentralblatt MATH identifier
0955.34073

Rights
1998 © Institut Mittag-Leffler

Citation

Gesztesy, Fritz; Weikard, Rudi. A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy. Acta Math. 181 (1998), no. 1, 63--108. doi:10.1007/BF02392748. http://projecteuclid.org/euclid.acta/1485891166.


Export citation

References

  • Airault, H., McKean H. P. & Moser, J., Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Comm. Pure Appl. Math., 30 (1977), 95–148.
  • Akhiezer N. I., On the spectral theory of Lamé's equation. Istor.-Mat. Issled., 23 (1978), 77–86, 357 (Russian).
  • Elements of the Theory of Elliptic Functions. Amer. Math. Soc., Providence, RI, 1990.
  • Al'ber, S. I., Investigation of equations of Korteweg-de Vries type by the method of recurrence relations. J. London Math. Soc., 19 (1979), 467–480 (Russian).
  • Alfimov, G. L., Its, A. R. & Kulagin, N. E., Modulation instability of solutions of the nonlinear Schrödinger equation. Theoret. and Math. Phys., 84 (1990), 787–793.
  • Arscott, F. M., Periodic Differential Equations. MacMillan, New York, 1964.
  • Babich, M. V., Bobenko, A. I. & Matveev, V. B., Reductions of Riemann thetafunctions of genus g to theta-functions of lower genus, and symmetries of algebraic curves. Soviet Math. Dokl., 28 (1983), 304–308.
  • — Solutions of nonlinear equations integrable in Jacobi theta functions by the method of the inverse problem, and symmetries of algebraic curves. Math. USSR-Izv., 26 (1986), 479–496.
  • Belokolos, E. D., Bobenko, A. I., Enol'skii, V. Z., Its, A. R. & Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer-Verlag, Berlin, 1994.
  • Belokolos, E. D., Bobenko, A. I., Matveev, V. B. & Enol'skii, V. Z., Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations. Russian Math. Surveys, 41:2 (1986), 1–49.
  • Belokolos, E. D. & Enol'skii, V. Z. Verdier elliptic solitons and the Weierstrass theory of reduction. Functional Anal. Appl., 23 (1989), 46–47.
  • — Reduction of theta functions and elliptic finite-gap potentials. Acta Appl. Math., 36 (1994), 87–117.
  • Bennequin, D., Hommage à Jean-Louis Verdier: au jardin des systèmes intégrables, in Integrable Systems: The Verdier Memorial Conference (Luminy, 1991), pp. 1–36. Birkhäuser, Boston, MA, 1993.
  • Buchstaber, V. M., Bnol'skii, V. Z. & Leykin, D. V., Hyperelliptic Kleinian functions and applications, in Solitons, Geometry and Topology: On the Crossroad, pp. 1–33. Amer. Math. Soc. Transl. Ser. 2, 179. Amer. Math. Soc., Providence, RI, 1997.
  • Buchstaber, V. M., Kleinian functions, hyperelliptic Jacobians and applications. To appear in Revs. in Mathematics and Mathematical Physics, 10 (S. Novikov & I. Krichever, eds.), pp. 1–115. Gordon & Breach.
  • Burchnall, J. L. & Chaundy, T. W., Commutative ordinary differential operators. Proc. London Math. Soc. (2), 21 (1923), 420–440.
  • — Commutative ordinary differential operators. Proc. Roy. Soc. London Ser. A 118 (1928), 557–583.
  • Burkhardt, H., Elliptische Funktionen, 2nd edition. Verlag von Veit, Leipzig, 1906.
  • Calogero, F., Exactly solvable one-dimensional many-body problems. Lett. Nuovo Cimento (2), 13 (1975), 411–416.
  • Choodnovsky, D. V. & Choodnovsky, G. V., Pole expansions of nonlinear partial differential equations. Nuovo Cimento B, 40 (1977), 339–353.
  • Christiansen, P. L., Eilbeck, J. C., Enolskii, V. Z. & Kostov, N. A., Quasi-periodic solutions of the coupled nonlinear Schrödinger equations. Proc. Roy. Soc. London Ser. A, 451 (1995), 685–700.
  • Chudnovsky, D. V., Meromorphic solutions of nonlinear partial differential equations and many-particle completely integrable systems. J. Math. Phys., 20 (1979), 2416–2422.
  • Coddington, E. A. & Levinson, N., Theory of Ordinary Differential Equations. Krieger, Malabar, 1984.
  • Colombo, E., Pirola, G. P. & Previato, E., Density of elliptic solitons. J. Reine Angew. Math., 451 (1994), 161–169.
  • Donagi, R. & Markman, E., Spectral covers algebraically completely integrable, Hamiltonian systems, and moduli of bundles, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), pp. 1–119. Lecture Notes in Math., 1620. Springer-Verlag, Berlin, 1996.
  • Dubrovin, B. A. & Novikov, S. P., Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation. Soviet Phys. JETP, 40 (1975), 1058–1063.
  • Ehlers, F. & Knörrer, H., An algebro-geometric interpretation of the Bäcklund transformation for the Korteweg-de Vries equation. Comment. Math. Helv., 57 (1982), 1–10.
  • Eilbeck, J. C. & Enol'skii, V. Z., Elliptic Baker-Akhiezer functions and an application to an integrable dynamical system. J. Math. Phys., 35 (1994), 1192–1201.
  • Enol'skii, V. Z., On the solutions in elliptic functions of integrable nonlinear equations. Phys. Lett. A, 96 (1983), 327–330.
  • — On the two-gap Lamé potentials and elliptic solutions of the Kovalevskaja problem connected with them. Phys. Lett. A, 100 (1984), 463–466.
  • — On solutions in elliptic functions of integrable nonlinear equations associated with two-zone Lamé potentials. Soviet Math. Dokl., 30 (1984), 394–397.
  • Enol'skii, V. Z. & Eilbeck, J. C., On the two-gap locus for the elliptic Calogero-Moser model. J. Phys. A, 28 (1995), 1069–1088.
  • Enol'skii, V. Z. & Kostov, N. A., On the geometry of elliptic solitons. Acta Appl. Math., 36 (1994), 57–86.
  • Floquet, G., Sur les équations différentielles linéaires à coefficients doublement périodiques. C. R. Acad. Sci. Paris, 98 (1884), 38–39, 82–85.
  • — Sur les équations différentielles linéaires à coefficients doublement périodiques. Ann. Sci. École Norm. Sup. (3), 1 (1884), 181–238.
  • — Addition a un mémorie sur les équations différentielles linéaires. Ann. Sci. École Norm. Sup. (3), 1 (1884), 405–408.
  • Gesztesy F. & Holden, H., Darboux-type transformations and hyperelliptic curves. In preparation.
  • Gesztesy, F. & Ratnaseelan, R., An alternative approach to algebro-geometric solutions of the AKNS hierarchy. Rev. Math. Phys., 10 (1998), 345–391.
  • Gesztesy, F. & Sticka, W., On a theorem of Picard. Proc. Amer. Math. Soc., 126 (1998), 1089–1099.
  • Gesztesy, F. & Weikard, R., Lamé potentials and the stationary (m) KdV hierarchy. Math. Nachr., 176 (1995), 73–91.
  • — Treibich-Verdier potentials and the stationary (m) KdV hierarchy. Math. Z., 219 (1995), 451–476.
  • — On Picard potentials. Differential Integral Equations, 8 (1995), 1453–1476.
  • — Floquet theory revisited, in: Differential Equations and Mathematical Physics (I. Knowles, ed.), pp. 67–84. International Press, Boston, MA, 1995.
  • — A characterization of elliptic finite-gap potentials. C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 837–841.
  • —, Picard potentials and Hill's equation on a torus. Acta Math., 176 (1996), 73–107.
  • Gesztesy, F. & Weikard, R., Toward a characterization of elliptic solutions of hierarchies of soliton equations. To appear in Contemp. Math.
  • Grebert, B. & Kappeler, T., Gap estimates of the spectrum of the Zakharov-Shabat system. Preprint, 1997.
  • Greco, S. & Previato, E., Spectral curves and ruled surfaces: projective models, in The Curves Seminar at Queen's, Vol. VIII (Kingston, ON, 1990/1991), Exp. F, 33 pp. Queen's Papers in Pure and Appl. Math., 88, Queen's Univ., Kingston, ON, 1991.
  • Halphen, G.-H., Traité des fonctions elliptiques, tome 2. Gauthier-Villars, Paris, 1888.
  • Hermite, C., Oeuvres, tome 3. Gauthier-Villars, Paris, 1912.
  • Ince, E. L., Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh Sect. A, 60 (1940), 83–99.
  • —, Ordinary Differential Equations. Dover, New York, 1956.
  • Its, A. R., Inversion of hyperelliptic integrals and integration of nonlinear differential equations. Vestnik Leningrad Univ. Mat. Mekh. Astronom., 9 (1981), 121–129.
  • Its, A. R. & Enol'skii, V. Z., Dynamics of the Calogero-Moser system and the reduction of hyperelliptic integrals to elliptic integrals, Functional Anal. Appl., 20 (1986), 62–64.
  • Klein, F., Über den Hermite'schen Fall der Lamé'schen Differentialgleichung. Math. Ann., 40 (1892), 125–129.
  • Konopelchenko, B. G., Elementary Bäcklund transformations, nonlinear superposition principle and solutions of the integrable equations. Phys. Lett. A, 87 (1982), 445–448.
  • Kostov, N. A. & Enol'skii, V. Z., Spectral characteristics of elliptic solitons. Math. Notes, 53 (1993), 287–293.
  • Krause, M., Theorie der doppeltperiodischen Funktionen einer veränderlichen Grösse Vol. 2, Teubner, Leipzig, 1897.
  • Krichever, I. M., Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles, Functional Anal. Appl., 14 (1980), 282–290.
  • —, Nonlinear equations and elliptic curves. Revs. Sci. Technology, 23 (1983), 51–90.
  • —, Elliptic solutions of nonlinear integrable equations and related topics. Acta Appl. Math., 36 (1994), 7–25.
  • Lee, J. E. & Tsui, M. P., The geometry and completeness of the two-phase solutions of the nonlinear Schrödinger equation, in Nonlinear Evolution Equations and Dynamical Systems (Kolymbari, 1989), pp. 94–97. Springer-Verlag, Berlin, 1990.
  • Marchenko, V. A., Sturm-Liouville Operators and Applications. Birkhäuser, Basel, 1986.
  • Matveev, V. B. & Smirnov, A. O., Symmetric reductions of the Riemann θ-function and some of their applications to the Schrödinger and Boussinesq equation. Amer. Math. Soc. Transl. Ser. 2, 157 (1993), 227–237.
  • Mertsching, J., Quasiperiodic solutions of the nonlinear Schrödinger equation. Fortschr. Phys., 35 (1987), 519–536.
  • Mittag-Leffler, G., Sur les équations différentielles linéaires à coefficients doublement périodiques. C. R. Acad. Sci. Paris, 90 (1880), 299–300.
  • Mokhov, O. I., Commuting differential operators of rank 3, and nonlinear differential equations. Math. USSR-Izv., 35 (1990), 629–655.
  • Moser, J., Three integrable Hamiltonian systems connected with isospectral deformations. Adv. in Math., 16 (1975), 197–220.
  • Newell, A. C., Solitons in Mathematics and Physics. SIAM, Philadelphia, 1985.
  • Novikov, S. P., The periodic problem for the Korteweg-de Vries equation. Functional Anal. Appl., 8 (1974), 236–246.
  • Novikov, S., Manakov, S. V., Pitaevskil, L. P. & Zakharov, V. E., Theory of Solitons. Consultants Bureau, New York, 1984.
  • Ohmiya, M., KdV polynomials and Λ-operator. Osaka J. Math., 32 (1995), 409–430.
  • Ohmiya, M., Spectrum of Darboux transformation of differential operator. Preprint, 1996.
  • Olshanetsky, M. A. & Perelomov, A. M., Classical integrable finite-dimensional systems related to Lie Algebras. Phys. Rep., 71 (1981), 313–400.
  • Osborne, A. R. & Boffetta, G., A summable multiscale expansion for the KdV equation, in Nonlinear Evolution Equations: Integrability and Spectral Methods (A. Degasperis, A. P. Fordy and M. Lakshmanan, eds.), pp. 559–569. Manchester Univ. Press, Manchester, 1990.
  • Pavlov, M. V., Nonlinear Schrödinger equation and the Bogolyubov-Whitham method of averaging. Theoret. and Math. Phys., 71 (1987), 584–588.
  • Picard, E., Sur une généralisation des fonctions périodiques et sur certaines équations différentielles linéaires. C. R. Acad. Sci. Paris, 89 (1879), 140–144.
  • —, Sur une classe d'équations différentielles linéaires. C. R. Acad. Sci. Paris, 90 (1880), 128–131.
  • —, Sur les équations différentielles linéaires à coefficients doublement périodiques. J. Reine Angew. Math., 90 (1881), 281–302.
  • Previato, E., The Calogero-Moser-Krichever system and elliptic Boussinesq solitons, in Hamiltonian Systems, Transformation Groups and Spectral Transform Methods (Montreal, PQ, 1989), pp. 57–67. Univ. Montréal, Montreal, PQ, 1990.
  • —, Monodromy of Boussinesq elliptic operators, Acta Appl. Math., 36 (1994), 49–55.
  • —, Seventy years of spectral curves: 1923–1993, in Integrable Systems and Quantum Groups (Montecatini Terme, 1993), pp. 419–481. Lecture Notes in Math., 1620. Springer-Verlag, Berlin, 1996.
  • Smirnov, A. O., Real finite-gap regular solutions of the Kaup-Boussinesq equation. Theoret. and Math. Phys., 66 (1986), 19–31.
  • —, A matrix analogue of Appell's theorem and reductions of multidimensional Riemann theta functions. Math. USSR-Sb., 61 (1988), 379–388.
  • —, Elliptic solutions of the Korteweg-de Vries equation. Math. Notes 45 (1989), 476–481.
  • —, Real elliptic solutions of the Sine-Gordon equation. Math. USSR-Sb., 70 (1990), 231–240.
  • —, Finite-gap elliptic solutions of the KdV equation. Acta Appl. Math., 36 (1994), 125–166.
  • —, Solutions of the KdV equation elliptic in t. Theoret. and Math. Phys., 100 (1994), 937–947.
  • —, Elliptic solutions of the nonlinear Schrödinger equation and the modified Kortewegde Vries equation. Russian Acad. Sci. Sb. Math., 82 (1995), 461–470.
  • —, The Dirac operator with elliptic potential. Sb. Math., 186 (1995), 1213–1221.
  • Taimanov, I. A., Elliptic solutions of nonlinear equations. Theoret. and Math. Phys., 84 (1990), 700–706.
  • —, On the two-gap elliptic potentials. Acta Appl. Math., 36 (1994), 119–124.
  • Tkachenko, V., Non-selfadjoint periodic Dirac operators. Preprint, 1997.
  • Treibich, A., Compactified Jacobians of tangential covers, in Integrable Systems: The Verdier Memorial Conference (Luminy, 1991), pp. 39–60. Birkhäuser, Boston, MA, 1993.
  • —, New elliptic potentials. Acta Appl. Math., 36 (1994), 27–48.
  • Treibich, A. & Verdier, J.-L., Solitons elliptiques, in The Grothendieck Festschrift, Vol. III, pp. 437–480. Progr. Math., 115. Birkhäuser Boston, Boston, MA, 1990.
  • —, Revêtements tangentiels et sommes de 4 nonbres triangulaires. C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), 51–54.
  • —, Revêtements exceptionnels et sommes de 4 nombres triangulaires. Duke Math. J., 68 (1992), 217–236.
  • Turbiner, A. V., Lamé equation, sl(2) algebra and isospectral deformations. J. Phys. A, 22 (1989), L1-L3.
  • Verdier, J.-L., New elliptic solitons, in Algebraic Analysis, Vol. II (M. Kashiwara and T. Kawai, eds.), pp. 901–910. Academic Press, Boston, MA, 1988.
  • Ward, R. S., The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A, 20 (1987), 2679–2683.
  • Weikard, R. On Hill's equation with a singular complex-valued potential. Proc. London Math. Soc. (3), 76 (1998), 603–633.
  • Whittaker, E. T. & Watson, G. N., A Course of Modern Analysis. Cambridge Univ. Press, Cambridge, 1996.