Acta Mathematica

Quasiconformal maps in metric spaces with controlled geometry

Juha Heinonen and Pekka Koskela

Full-text: Open access

Note

Both authors were supported in part by the NSF and the Academy of Finland. The first author is a Sloan Fellow.

Article information

Source
Acta Math. Volume 181, Number 1 (1998), 1-61.

Dates
Received: 24 June 1996
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485891165

Digital Object Identifier
doi:10.1007/BF02392747

Mathematical Reviews number (MathSciNet)
MR1654771

Zentralblatt MATH identifier
0915.30018

Rights
1998 © Institut Mittag-Leffler

Citation

Heinonen, Juha; Koskela, Pekka. Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), no. 1, 1--61. doi:10.1007/BF02392747. http://projecteuclid.org/euclid.acta/1485891165.


Export citation

References

  • Assouad, P., Plongements lipschitziens dans Rn. Bull. Soc. Math. France, 111 (1983), 429–448.
  • Beurling, A. & Ahlfors, L. V., The boundary correspondence under quasiconformal mappings, Acta Math., 96 (1956), 125–142.
  • Bojarski, B., Homeomorphic solutions of Beltrami systems. Dokl. Akad. Nauk SSSR, 102 (1955), 661–664 (Russian).
  • Bourdon, M. & Pajot, H., Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings. To appear in Proc. Amer. Math. Soc.
  • Buser, P., A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4), 15 (1982), 213–230.
  • Cannon, J. W., The combinatorial Riemann mapping theorem. Acta Math., 173 (1994), 155–234.
  • Cheeger, J. & Colding, T. H., Almost rigidity of warped products and the structure of spaces with Ricci curvature bounded below. C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 353–357.
  • Coifman, R. & Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals. Studia Math., 51 (1974), 241–250.
  • Cannon, J. W., Floyd, W. J. & Parry, W. R., Squaring rectangles: The finite Riemann mapping theorem. Contemp. Math., 169 (1994), 133–212.
  • Chavel, I., Riemannian Geometry—A Modern Introduction. Cambridge Tracts in Math., 108. Cambridge Univ. Press, Cambridge, 1993.
  • Cannon, J. W. & Swenson, E. L., Recognizing constant curvature discrete groups in dimension 3. Trans. Amer. Math. Soc., 350 (1998), 809–849.
  • Coulhon, T. & Saloff-Coste, L., Variétés riemanniennes isométriques à l'infini. Rev. Mat. Iberoamericana, 11 (1995), 687–726.
  • Coifman, R. & Weiss, G., Analyse harmonique non-commutative sur certains espaces homogènes. Lecture Notes in Math., 242. Springer-Verlag, Berlin-New York, 1971.
  • David, G. & Semmes, S., Strong A-weights, Sobolev inequalities and quasiconformal mappings, in Analysis and Partial Differential Equations, pp. 101–111. Lecture Notes in Pure and Appl. Math., 122. Dekker, New York, 1990.
  • —, Singular Integrals and Rectifiable Sets inRn: Au-delà des graphes lipschitziens. Astérisque, 193. Soc. Math. France, Paris, 1991.
  • —, Analysis of and on Uniformly Rectifiable Sets. Math. Surveys Monogr., 38. Amer. Math. Soc., Providence, RI, 1993.
  • Federer, H., Geometric Measure Theory. Grundlehren Math. Wiss., 153. Springer-Verlag, New York, 1969.
  • Fuglede, B., Extremal length and functional completion. Acta Math., 98 (1957), 171–219.
  • Gehring, F. W., The definitions and exceptional sets for quasiconformal mappings. Ann. Acad. Sci. Fenn. Math., 281 (1960), 1–28.
  • —, Symmetrization of rings in space. Trans. Amer. Math. Soc., 101 (1961), 499–519.
  • —, The LP-integrability of the partial derivatives of a quasiconformal mapping. Acta Math., 130 (1973), 265–277.
  • Ghys, E. & Harpe, P. de la, Sur les groupes hyperboliques d'après Mikhael Gromov. Progr. Math., 83. Birkhäuser, Boston, MA, 1990.
  • Gromov, M., Structures métriques pour les variétés riemanniennes. Edited by J. Lafontaine and P. Pansu. Textes Mathématiques, 1. CEDIC, Paris, 1981.
  • Gehring, F. W. & Martio, O., Quasiextremal distance domains and extension of quasiconformal mappings. J. Analyse Math., 45 (1985), 181–206.
  • Gromov, M. & Pansu, P., Rigidity of lattices: An introduction, in Geometric Topology: Recent Developments. Lecture Notes in Math., 1504. Springer-Verlag, Berlin-New York, 1991.
  • Gromov, M., Carnot-Carathéodory spaces seen from within, in Sub-Riemannian Geometry, pp. 79–323. Progr. Math., 144. Birkhäuser, Basel, 1996.
  • Gilbarg, D. & Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 2nd edition. Grundlehren Math. Wiss., 224. Springer-Verlag, Berlin-New York, 1983.
  • Heinonen, J., Quasiconformal mappings onto John domains. Rev. Mat. Iberoamericana, 5 (1989), 97–123.
  • —, A capacity estimate on Carnot groups. Bull. Sci. Math., 119 (1995), 475–484.
  • Haj⦊asz, P., Sobolev spaces on an arbitrary metric space. Potential Anal., 5 (1996), 403–415.
  • Haj⦊asz, P. & Koskela, P., Sobolev meets Poincaré. C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 1211–1215.
  • Hesse, J., A p-extremal length and p-capacity equality. Ark. Mat., 13 (1975), 131–144.
  • Heinonen, J. & Koskela, P., Definitions of quasiconformality. Invent. Math., 120 (1995), 61–79.
  • —, From local to global in quasiconformal structures. Proc. Nat. Acad. Sci. U.S.A., 93 (1996), 554–556.
  • Heinonen, J., Kilpeläinen, T. & Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Univ. Press, New York, 1993.
  • Hocking, J. G. & Young, G. S., Topology. Academic Press, Reading, MA, 1959.
  • Jerison, D., The Poincaré inequality for vector fields satisfying Hörmander's condition. Duke Math. J., 53 (1986), 503–523.
  • Koskela, P., Removable sets for Sobolev spaces. To appear in Ark. Mat.
  • Koskela, P. & MacManus, P., Quasiconformal mappings and Sobolev spaces. Studia Math., 131 (1998), 1–17.
  • Korányi, A. & Reimann, H. M., Quasiconformal mappings on the Heisenberg group. Invent. Math., 80 (1985), 309–338.
  • —, Foundations for the theory of quasiconformal mappings on the Heisenberg group. Adv. in Math., 111 (1995), 1–87.
  • Korevaar, J. N. & Schoen, R. M., Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom., 1 (1993), 561–659.
  • Loewner, C., On the conformal capacity in space. J. Math. Mech., 8 (1959), 411–414.
  • Mattila, P., Geometry of Sets and Measures in Euclidean Spaces. Cambridge Stud. Adv. Math., 44. Cambridge Univ. Press, Cambridge, 1995.
  • Margulis, G. A. & Mostow, G. D., The differential of a quasiconformal mapping of a Carnot-Carathéodory space., Geom. Funct. Anal., 5 (1995), 402–433.
  • Mostow, G. D., Strong Rigidity of Locally Symmetric Spaces. Princeton Univ. Press, Princeton, NJ, 1973.
  • —, A remark on quasiconformal mappings on Carnot groups. Michigan Math. J., 41 (1994), 31–37.
  • Maheux, P. & Saloff-Coste, L., Analyse sur les boules d'un opérateur souselliptique. Math. Ann., 303 (1995), 713–740.
  • Näkki, R., Extension of Loewner's capacity theorem. Trans. Amer. Math. Soc., 180 (1973), 229–236.
  • Pansu, P., Quasiisométries des variétés à courbure négative. Thesis, Université Paris VII, 1987.
  • —, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math., 129 (1989), 1–60.
  • —, Dimension conforme et sphère à l'infini des variétés à courbure négative. Ann. Acad. Sci. Fenn. Math., 14 (1989), 177–212.
  • Paulin, P., Un groupe hyperbolique est déterminé par son bord. J. London Math. Soc., 54 (1996), 50–74.
  • Reimann, H. M., An estimate for pseudoconformal capacities on the sphere. Ann. Acad. Sci. Fenn. Math., 14 (1989), 315–324.
  • Rudin, W., Real and Complex Analysis, 2nd edition. McGraw-Hill, New York-Düsseldorf-Johannesburg, 1974.
  • Semmes, S., Bilipschitz mappings and strong A-weights. Ann. Acad. Sci. Fenn. Math., 18 (1993), 211–248.
  • —, On the nonexistence of bilipschitz parameterizations and geometric problems about A-weights. Rev. Mat. Iberoamericana, 12 (1996), 337–410.
  • —, Good metric spaces without good parameterizations. Rev. Math. Iberoamericana, 12 (1996), 187–275.
  • —, Finding curves on general spaces through quantitative topology with applications to Sobolev and Poincarè inequalities. Selecta Math. (N.S.), 2 (1996), 155–295.
  • —, Some remarks about metric spaces, spherical mappings, functions and their derivatives. Publ. Math., 40 (1996), 411–430.
  • Saloff-Coste, L., Uniformly elliptic operators on Riemannian manifolds. J. Differential Geom., 36 (1992), 417–450.
  • Stein, E. M., Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ, 1970.
  • —, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Univ. Press, Princeton, NJ, 1993.
  • Strömberg, J. D. & Torchinsky, A., Weighted Hardy Spaces, Lecture Notes in Math., 1381. Springer-Verlag, Berlin-New York, 1989.
  • Sullivan, D. P., Hyperbolic geometry and homeomorphisms, in Geometric Topology (Athens, GA, 1977), pp. 543–555. Academic Press, New York-London, 1979.
  • Tukia, P. & Väisälä, J., Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. Math., 5 (1980), 97–114.
  • Tyson, J., Quasiconformality and quasisymmetry in metric measure spaces. To appear in Ann. Acad. Sci. Fenn. Math.
  • Väisälä, J., Lectures on n-Dimensional Quasiconformal Mappings. Lecture Notes in Math., 229. Springer-Verlag, Berlin-New York, 1971.
  • —, Quasisymmetric embeddings in Euclidean spaces. Trans. Amer. Math. Soc., 264 (1981), 191–204.
  • —, Quasimöbius maps. J. Analyse Math., 44 (1984/85), 218–234.
  • —, Quasiconformal maps of cylindrical domains. Acta Math., 162 (1989), 201–225.
  • —, Free quasiconformality in Banach spaces, I. Ann. Acad. Sci. Fenn. Math., 15 (1990), 355–379.
  • —, Free quasiconformality in Banach spaces, II. Ann. Acad. Sci. Fenn. Math., 16 (1991), 255–310.
  • Vodop'yanov, S. K. & Greshnov, A. V., Analytic properties of quasiconformal mappings on Carnot groups. Siberian Math. J., 36 (1995), 1142–1151.
  • Varopoulos, N. Th., Saloff-Coste, L. & Coulhon, T., Analysis and Geometry on Groups. Cambridge Tracts in Math., 100. Cambridge Univ. Press, Cambridge, 1992.
  • Vuorinen, M., Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math., 1319. Springer-Verlag, New York, 1988.
  • Ziemer, W. P., Extremal length and p-capacity. Michigan Math. J., 16 (1969), 43–51.