Acta Mathematica

Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension

Jacob Palis and Jean-Christophe Yoccoz

Full-text: Open access

Article information

Source
Acta Math. Volume 172, Number 1 (1994), 91-136.

Dates
Received: 28 August 1991
Revised: 20 January 1993
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485890756

Digital Object Identifier
doi:10.1007/BF02392792

Zentralblatt MATH identifier
0801.58035

Rights
1994 © Almqvist & Wiksell

Citation

Palis, Jacob; Yoccoz, Jean-Christophe. Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension. Acta Math. 172 (1994), no. 1, 91--136. doi:10.1007/BF02392792. http://projecteuclid.org/euclid.acta/1485890756.


Export citation

References

  • [AM] Araujo, A. & Mañé, R. On the existence of hyperbolic attractors and homoclinic tangencies for surface diffeomorphisms. To appear.
  • [BC] Benedicks, M. & Carleson, L., The dynamics of the Hénon map. Ann. of Math., 133 (1991), 73–169.
  • [Bi] Birkhoff, G. D., Nouvelles recherches sur les systèmes dynamiques. Mem. Pont. Accad. Sci. Nuovi Lyncei, 1 (1935), 85–216.
  • [Bo1] Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math., 470. Springer-Verlag, 1975.
  • — Hausdorff dimensions of quasi-circles. Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11–25.
  • [F] Falconer, K. J., The Geometry of Fractal Sets. Cambridge Univ. Press, 1985.
  • [Man] Mañé, R., The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces. Bol. Soc. Brasil. Mat. (N.S.), 20 (1990), 1–24.
  • [Mar01] Marstrand, J. M., Some fundamental properties of plane sets of fractional dimensions. Proc. London Math. Soc., 4 (1954), 257–302.
  • [MM] Manning, A. & McCluskey, H., Hausdorff dimension for horseshoes. Ergodic Theory Dynamical Systems, 3 (1983), 251–261.
  • [MV] Mora, L. & Viana, M., Abundance of strange attractors. Acta Math., 171 (1993), 1–71.
  • [N] Newhouse, S., The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math. 50 (1979), 101–151.
  • [NP] Newhouse, S. & Palis, J., Cycles and bifurcation theory. Astérisque, 31 (1976), 44–140.
  • [P] Poincaré, H., Sur le problème de trois corps et les equations de la dynamique (Mémoire couronné du prix de S. M. le roi Oscar II de Suède). Acta Math., 13 (1890), 1–270.
  • [PT1] Palis, J. & Takens, F., Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms. Invent. Math., 82 (1985), 397–422.
  • —, Hyperbolicity and creation of homoclinic orbits. Ann. of Math., 125 (1987), 337–374.
  • [PT3] Palis, J. & Takens, F., Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Fractal Dimensions and Infinitely Many Attractors. Cambridge Univ. Press, 1993.
  • [PV] Palis, J. & Viana, M., On the continuity of Hausdorff dimension and limit capacity for horseshoes, in Dynamical Systems, Valparaiso, 1986. Lecture Notes in Math., 1331. Springer-Verlag, 1988.
  • [R] Robinson, C., Bifurcation to infinitely many sinks. Comm. Math. Phys., 90 (1983), 433–459.
  • [S] Smale, S., Diffeomorphisms with many periodic points, in Differential and Combinatorial Topology, pp. 63–80. Princeton Univ. Press, 1965.
  • [YA] Yorke, J. A. & Alligood, K. T., Cascades of period doubling bifurcations: a prerequisite for horseshoes. Bull. Amer. Math. Soc., 9 (1983), 319–322.