Acta Mathematica

Abundance of strange attractors

Leonardo Mora and Marcelo Viana

Full-text: Open access

Article information

Source
Acta Math. Volume 171, Number 1 (1993), 1-71.

Dates
Received: 26 June 1990
Revised: 5 August 1992
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485890723

Digital Object Identifier
doi:10.1007/BF02392766

Zentralblatt MATH identifier
0815.58016

Rights
1993 © Almqvist & Wiksell

Citation

Mora, Leonardo; Viana, Marcelo. Abundance of strange attractors. Acta Math. 171 (1993), no. 1, 1--71. doi:10.1007/BF02392766. http://projecteuclid.org/euclid.acta/1485890723.


Export citation

References

  • [BC1] Benedicks, M. & Carleson, L., On iterations of 1−ax2 on (−1, 1.). Ann. of Math., 122 (1985), 1–25.
  • [BC2]—, The dynamics of the Hénon Map. Ann. of Math., 133 (1991) 73–169.
  • [He] Hénon, M., A two dimensional mapping with a strange attractor. Comm. Math. Phys., 50 (1976), 69–77.
  • [Py] Plykin, R., On the geometry of hyperbolic attractors of smooth cascades. Russian Math. Surveys, 39 (1984), 85–131.
  • [PT1] Palis, J. & Takens, F., Hyperbolicity and the creation of homoclinic orbits. Ann. of Math., 125 (1987), 337–374.
  • [PT2] Palis, J. & Takens, F., Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Fractal Dimensions and Infinitely Many Attractors. Cambridge University Press, 1990.
  • [Ru] Ruelle, D., Elements of Differentiable Dynamics and Bifurcation Theory. Academic Press, 1989.
  • [RE] Ruelle, D. & Eckmann, J., Ergodic theory of chaos and strange attractors. Rev. Modern Phys., 57 (1985), 617–656.
  • [Sh] Shub, M., Global Stability of Dynamical Systems. Springer-Verlag, 1987.
  • [Si] Singer, D., Stable orbits and bifurcations of maps of the interval. SIAM J. Appl. Math., 35 (1978), 260.