Acta Mathematica

Quasiconformal 4-manifolds

S. K. Donaldson and D. P. Sullivan

Full-text: Open access

Article information

Source
Acta Math. Volume 163 (1989), 181-252.

Dates
Received: 5 January 1989
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485890582

Digital Object Identifier
doi:10.1007/BF02392736

Zentralblatt MATH identifier
0704.57008

Rights
1989 © Almqvist & Wiksell

Citation

Donaldson, S. K.; Sullivan, D. P. Quasiconformal 4-manifolds. Acta Math. 163 (1989), 181--252. doi:10.1007/BF02392736. http://projecteuclid.org/euclid.acta/1485890582.


Export citation

References

  • Ahlfors, L. V., Lectures on quasiconformal mapping. Van Nostrand, (Princeton) 1966. (Reprinted, Wadsworth Inc., Belmont 1987.)
  • Atiyah, M. F., Hitchin, N. J. & Singer, I. M., Self-duality in four dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A., 362 (1978), 425–461.
  • Atiyah, M. F. & Singer, I. M., The index of elliptic operators I. Ann. of Math., 87 (1968), 484–530.
  • Boyarskii, B. V., Homeomorphic solutions of Beltrami systems. Dokl. Akad. Nauk. SSSR, 102 (1955), 661–664.
  • Donaldson, S. K., An application of gauge theory to four dimensional topology. J. Differential Geom., 18 (1983), 279–315.
  • —, Connections, cohomology and the intersection forms of four manifolds. J. Differential Geom., 24 (1986), 275–341.
  • —, The orientation of Yang-Mills moduli spaces and 4-manifold topology. J. Differential Geom., 26 (1987), 397–428.
  • —, Irrationality and the h-cobordism conjecture. J. Differential Geom., 26 (1987), 141–168.
  • Donaldson, S. K., Polynomial invariants for smooth four manifolds. In press with Topology.
  • Donaldson, S. K., The Geometry of four manifolds. Proc. Int. Congress Mathematicians, Berkeley, 1986, ed. A. Gleason, pp. 43–54.
  • Eells, J., A setting for global analysis. Bull. Amer. Math. Soc. 72 (1966), 751–807.
  • Fintushel, R. & Stern, R., SO(3) connections and the topology of four manifolds. J. Differential Geom., 20 (1984), 523–539.
  • Freed, D. S. & Uhlenbeck, K. K., Instantons and four manifolds. Math. Sci. Res. Publ. 1. Springer, New York 1984.
  • Freedman, M. H., The topology of four dimensional manifolds. J. Differential Geom., 17 (1982), 357–453.
  • Furuta, M., Perturbation of moduli spaces of self-dual connections. J. Fac. Sci. Univ. Tokyo Sect. IA, 34 (1987), 275–297.
  • Gehring, F. W., The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math., 130 (1973), 265–277.
  • Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. of Math. Studies 105, Princeton U.P. 1983.
  • Gilberg, D. & Trudinger, N. S., Elliptic partial differential equations of second order. Springer Verlag, Berlin 1983.
  • Kotschick, D., On manifolds homeomorphic to $CP^2 \# 8\overline {CP} ^2 $ . Invent. Math., 95 (1989), 591–600.
  • Quinn, F., Ends of maps III, dimensions 4 and 5. J. Differential Geom., 17 (1982), 503–521.
  • Restrepo, G., Differentiable norms in Banach spaces. Bull. Amer. Math. Soc., 70 (1964), 413–414.
  • Sedlacek, S., A direct method for minimising the Yang-Mills functional. Comm. Math. Phys., 86 (1982), 515–528.
  • Segal, G. B., Fredholm complexes. Quart. J. Math. (2), 21 (1970), 385–402.
  • Stein, E. M., Singular integral operators and differentiability properties of functions. Princeton U.P. 1970.
  • Sullivan, D. P., Hyperbolic geometry and homeomorphisms. Proc. Georgia Conf. on Geometric Topology, 1978, ed. J. Cantrell. Academic Press, New York.
  • Taubes, C. H., Self-dual connections on manifolds with indefinite intersection matrix. J. Differential Geom., 19 (1984), 517–560.
  • —, Gauge theory on asymptotically periodic 4-manifolds. J. Differential Geom., 25 (1987), 363–430.
  • Teleman, N., The index of signature operators on Lipschitz manifolds. Publ. Math. Inst. Hautes Études Sci., 58 (1983), 39–78.
  • —, The index theorem for topological manifolds. Acta Math., 153 (1984), 117–152.
  • Uhlenbeck, K. K., Connections with Lp bounds on curvature. Comm. Math. Phys., 83 (1982), 31–42.
  • —, Removable singularities in Yang-Mills fields. Comm. Math. Phys., 83 (1982), 11–30.
  • Väisälä, J., Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics 229, Springer 1971.