Acta Mathematica

Thue’s equation and a conjecture of Siegel

J. Mueller and W. M. Schmidt

Full-text: Open access

Note

Supported in part by NSF grant DMS-8604568.

Note

Supported in part by NSF grant DMS-8603093.

Article information

Source
Acta Math. Volume 160 (1988), 207-247.

Dates
Received: 9 February 1987
Revised: 24 August 1987
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485890520

Digital Object Identifier
doi:10.1007/BF02392276

Zentralblatt MATH identifier
0655.10016

Rights
1988 © Almqvist & Wiksell

Citation

Mueller, J.; Schmidt, W. M. Thue’s equation and a conjecture of Siegel. Acta Math. 160 (1988), 207--247. doi:10.1007/BF02392276. http://projecteuclid.org/euclid.acta/1485890520.


Export citation

References

  • Bombieri, E., & Schmidt, W. M., On Thue’s equation. Invent. Math., 88 (1987), 69–81.
  • Chowla, S., Contributions to the analytic theory of numbers II. J. Indian Math. Soc., 20 (1933), 120–128.
  • Davenport, H., Note on a principle of Lipschitz. J. London Math. Soc., 26 (1951), 179–183.
  • Evertse, J. H., On the equation axn−byn=c. Compositio Math., 47 (1982), 288–315.
  • Evertse, J. H., Upper bounds for the number of solutions of diophantine equations. Math. Centrum Amsterdam, 1983, 1–127.
  • Hyyrö, S., Über die Gleichung axn−byn=c und das Catalansche Problem. Ann. Acad. Sci Fenn., Ser. AI, 355 (1964), 1–50.
  • Khovansky, A. G., On a class of transcendental equations. Soviet Math. Dokl., 22 (1980), 762–765.
  • —, Sur les racines complexes des systèmes d’équations algébriques comportant peu de termes. C.R. Acad. Sci. Paris, 292 (1981), 937–940.
  • Khovansky, A. G., Fewnomials and Pfaff manifolds. Proc. Int. Cong. Math., Warsaw 1983, pp. 549–564.
  • Mahler, K., Zur Approximation algebraischer Zahlen. III. Acta Math., 62 (1934), 91–166.
  • —, On the lattice points on curves of genus 1. Proc. London Math. Soc. (2), 39 (1935), 431–466.
  • —, An application of Jensen’s formula for polynomials. Mathematika, 7 (1960), 98–100.
  • Mueller, J., Counting solutions of |axr−byr|≤h. Quart. J. Math. Oxford (to appear).
  • Mueller, J. & Schmidt, W. M., Trinomial Thue equations and inequalities. J. Reine Angew. Math., 379 (1987), 76–99.
  • Ramachandra, K., A lattice point problem for norm forms in several variables, J. Number Theory, 1 (1969), 534–555.
  • Risler, J. J., Complexité et Géométrie Réelle. Sém. Bourbaki (1984–85), no. 637, pp. 89–100.
  • Schmidt, W. M., Thue equations with few coefficients. Trans. Amer. Math. Soc., 303 (1987), 241–255.
  • Siegel, C. L., Über einige Anwendungen diophantischer Approximationen. Abh. Preuss. Akad. Wiss. Phys.-math. Kl., 1929, Nr. 1.
  • Silverman, J., Integer points on curves of genus 1. J. London Math. Soc. (2), 28 (1983), 1–7.