Acta Mathematica

Counterexamples to a conjecture of Grothendieck

Gilles Pisier

Full-text: Open access

Article information

Source
Acta Math. Volume 151 (1983), 181-208.

Dates
Received: 4 April 1982
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485890264

Digital Object Identifier
doi:10.1007/BF02393206

Mathematical Reviews number (MathSciNet)
MR723009

Zentralblatt MATH identifier
0542.46038

Rights
1983 © Almqvist & Wiksell

Citation

Pisier, Gilles. Counterexamples to a conjecture of Grothendieck. Acta Math. 151 (1983), 181--208. doi:10.1007/BF02393206. http://projecteuclid.org/euclid.acta/1485890264.


Export citation

References

  • Bourgain, J., New Banach space properties of the disc algebra and H. To appear in Acta Math.
  • Davis, W. & Johnson, W., Compact, non nuclear operators. Studia Math., 51 (1974), 81–85.
  • Diestel, J. & Uhl, J. J., Vector measures. Math. Surveys no. 15. Amer. Math. Soc. 1977.
  • Dubinsky, E., Pełczyński, A. & Rosenthal, H. P., On Banach spaces X for which Π2(ℒ, X)=B(ℒ, X). Studia Math., 44 (1972), 617–648.
  • Enflo, P., A counterexample to the approximation problem in Banach spaces. Acta Math., 130 (1973), 309–317.
  • Grothendieck, A., Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Matem. Sao-Paulo, 8 (1956), 1–79.
  • Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires. Memoirs of the A.M.S. no. 16 (1955).
  • Hoffmann-Jørgensen, J., Sums of independent Banach space valued random variables. Aarhus University. Preprint series 72-73, no. 15.
  • Johnson, W. B., On finite dimensional subspaces of Banach spaces with local unconditional structure. Studia Math., 51 (1974), 225–240.
  • Kisliakov, S. V., On spaces with “small” annihilators. Zap. Naucn. Sem. Leningrad. Otdel. Math. Institute Steklov (LOMI), 65 (1976), 192–195 (russian).
  • —, What is needed for a O-absolutely summing to be nuclear? Complex Analysis and Spectral Theory, Seminar, Leningrad 1979–80, Springer Lecture Notes 864 (1981), p. 336.
  • Kwapień, S., On operators factorizable through Lp spaces. Bull. Soc. Math. France, Mémoire 31–32 (1972), 215–225.
  • Lindenstrauss, J., The geometric theory of the classical Banach spaces in Actes Congr. Internat. Math. Nice 1970, Vol. 2, p. 365–372.
  • Lindenstrauss, J. & Pełczyński, A., Absolutely summing operators in ℒp spaces and their applications. Studia Math., 29 (1968), 275–326.
  • Lindenstrauss, J. & Tzafriri, L., Classical Banach spaces, Vol. I and II. Springer Verlag. Berlin, Heidelberg, New York 1977 and 1979.
  • Maurey, B., Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espace Lp. Astérisque 11 (1974).
  • Kisliakov, S. V., Quelques problèmes de factorisation d'opérateurs linéaires, in Actes. Congrès Intern. Math. Vancouver, 1974, Vol. 2, p. 75.
  • Maurey, B. & Pisier, G., Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math., 58 (1976), 45–90.
  • Mooney, M. C., A theorem on bounded analytic functions, Pacific J. Math., 18 (1967), 827–831.
  • Pełczyński, A., Banach spaces of analytic functions and absolutely summing operators. C.B.M.S. Regional Conferences in Math. Vol. 30. Amer. Math. Soc. 1977.
  • Pietsch, A., Operator ideals. VEB, Berlin 1978 and North-Holland 1979.
  • Pisier, G., Une nouvelle classe d'espaces vérifiant le théorème de Grothendieck. Ann. Inst. Fourier, 28 (1978), 69–80.
  • —, Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert. Ann. Sci. École Norm. Sup., 13 (1980), 23–43.
  • —, Quotients of Banach spaces of cotype q. Proc. Amer. Math. Soc., 85 (1982), 32–36.
  • Pisier, G., On the duality between type and cotype. Proceedings of a conference on Martingale theory, Cleveland 1981. Springer Lecture Notes 939.
  • Rosenthal, H. P., Pointwise compact subsets of the first Baire class. Amer. J. Math., 99 (1977), 362–378.
  • Séminaire Maurey-Schwartz 1973–74, Ecole Polytechnique, Paris. Espaces Lp, applications radonifiantes et géométrie des espaces de Banach.
  • Séminaire d'analyse fonctionnelle 1978–79. Ecole Polytechnique, Palaiseau.
  • Zygmund, A., Trigonometric series I and II, second edition. Cambridge University Press (1968).
  • Bourgain, J. & Pisier, G., A construction of ℒ-spaces and related Banach spaces. To appear.