Acta Mathematica

Isometry groups of simply connected manifolds of nonpositive curvature II

Patrick Eberlein

Full-text: Open access

Note

Supported in part by NSF Grant MCS-7901730.

Article information

Source
Acta Math. Volume 149 (1982), 41-69.

Dates
Received: 2 February 1981
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485890202

Digital Object Identifier
doi:10.1007/BF02392349

Zentralblatt MATH identifier
0511.53048

Rights
1982 © Almqvist & Wiksell

Citation

Eberlein, Patrick. Isometry groups of simply connected manifolds of nonpositive curvature II. Acta Math. 149 (1982), 41--69. doi:10.1007/BF02392349. http://projecteuclid.org/euclid.acta/1485890202.


Export citation

References

  • Ballmann, W., Einige neue resultate über Mannigfaltigkeiten negativer Krümmung. Dissertation, Univ. of Bonn, 1978.
  • Ballmann, W., Einige neue resultate über Mannigfaltigkeiten negativer Krümmung. Bonner Math. Schriften, Vol. 113, 1978.
  • Bishop, R. & O’Neill, B., Manifolds of negative curvature. Trans. Amer. Math. Soc., 145 (1969), 1–49.
  • Borel, A., Compact Clifford-Klein forms of symmetric spaces. Topology, 2 (1963), 111–122.
  • —, Density properties for certain subgroups of semi-simple groups without compact components. Ann. of Math., 72(1) (1960), 179–188.
  • Cartan, E., Leçons sur la géométrie des espaces de Riemann. Paris, Gauthier-Villars, 1946.
  • —, Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. France, 54 (1926), 214–264 and 55 (1927), 114–134.
  • —, Sur certaines formes Riemanniennes remarquables des géométries à group fondamental simple. Ann. École Norm., 44 (1927), 345–467.
  • Cartan, E. Les espaces Riemanniens symétriques. Verh. Int. Math. Kongr., I. Zürich (1932), 152–161.
  • Chen, S., Duality condition and Property (S). Pacific J. Math., 98 (1982), 313–322.
  • Chen, S. & Eberlein, P., Isometry groups of simply connected manifolds of nonpositive curvature. Illinois J. Math., 24 (1) (1980), 73–103.
  • Dani, S. G., A simple proof of Borel’s density theorem. Math. Z., 174 (1980), 81–94.
  • Eberlein, P., Geodesic flows on negatively curved manifolds, I. Ann. of Math., 95 (1972), 492–510.
  • —, Geodesic flows on negatively curved manifolds, II. Trans. Amer. Math. Soc., 178 (1973), 57–82.
  • —, Lattices in spaces of nonpositive curvature. Ann. of Math., 111 (1980), 435–476.
  • Eberlein, P. & O’Neill, B., Visibility manifolds. Pacific J. Math., 46 (1973), 45–109.
  • Goto, M. & Goto, M., Isometry groups of negatively pinched 3-manifolds. Hiroshima Math. J., 9 (2) (1979), 313–319.
  • Gromoll, D. & Wolf, J., Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature. Bull. Amer Math. Soc., 77 (1971), 545–552.
  • Heintze, E., Personal communication.
  • Heintze, E., Mannigfaltigkeiten negativer Krümmung. Habilitationschrift, University of Bonn, 1976.
  • Helgason, S., Differential geometry and symmetric spaces. Academic Press, New York, 1962.
  • Kobayashi, S., Fixed points of isometries. Nagoya Math. J., 13 (1958), 63–68.
  • —, Transformation groups in differential geometry. Springer-Verlag, New York, 1972.
  • Kobayashi, S. & Nomizu, K., Foundations of differential geometry, Vol. 1. J. Wiley and Sons, New York, 1963, pp. 179–193.
  • Lawson, H. B. & Yau, S.-T., Compact manifolds of nonpositive curvature, J. Differential Geom., 7 (1972), 211–228.
  • Mostow, G. D., Strong rigidity of locally symmetric spaces. Annals of Math. Studies, number 78. Princeton University Press, Princeton, New Jersey, 1973.
  • Raghunathan, M. S., Discrete subgroups of Lie groups. Springer-Verlag, New York, 1972.
  • Shimizu, H., On discontinuous groups operating on the product of upper half planes. Ann. of Math., 77 (1) (1963), 33–71.
  • Wolf, J., Homogeneity and bounded isometries in manifolds of negative curvature. Illinois J. Math., 8 (1964), 14–18.
  • Wolf, J., Spaces of constant curvature. 2nd edition, published by the author. Berkeley, California, 1972.