Acta Mathematica

Symbolic dynamics for geodesic floes

Caroline Series

Full-text: Open access

Article information

Source
Acta Math. Volume 146 (1981), 103-128.

Dates
Received: 4 February 1980
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485890097

Digital Object Identifier
doi:10.1007/BF02392459

Zentralblatt MATH identifier
0488.58016

Rights
1981 © Almqvist & Wiksell

Citation

Series, Caroline. Symbolic dynamics for geodesic floes. Acta Math. 146 (1981), 103--128. doi:10.1007/BF02392459. http://projecteuclid.org/euclid.acta/1485890097.


Export citation

References

  • Adler, R., f-expansions revisited. Springer Lecture Notes 318, (1973).
  • Anosov, D. V., Geodesic Flows on Closed Riemann manifolds with negative curvature. Proc. Steklov. Inst. Math., 90 (1967).
  • Artin, E., Ein Mechanisches System mit quasi-ergodischen Bahnen, Collected Papers pp. 499–501. Addison Wesley 1965.
  • Bers, L., Uniformization, moduli and Kleinian groups. Bull. London Math. Soc., 4 (1972), 257–300.
  • Bowen, R. & Ruelle, D., The ergodic theory of Axiom A flows Invent. Math., 29 (1975), 181–202.
  • Bowen, R. & Series, C., Markov maps for Fuchsian groups. Inst. Hautes Études Sci. Publ. Math., 50 (1979).
  • Dani, S., Dynamical systems on homogeneous spaces. Bull. Amer. Math. Soc., 82 (1976), 950–952.
  • Denker, M., Grillenberger, C. & Sigmund, K., Ergodic Theory on compact spaces. Springer Lecture Notes 527, (1976).
  • Ford, L. R., Automorphic Functions. McGraw Hill, New York, 1929.
  • Hedlund, G. A., A metrically transitive group defined by the modular group. Amer. J. Math., 57 (1935), 668–678.
  • —, On the metrical transitivity of the geodesics on closed surfaces of constant negative curvature. Ann. of Math., 35 (1934), 787–808.
  • Hopf, E., Ergodentheorie. Abh. Sächs. Akad. Wiss. Leipzig, 91 (1939), 261.
  • Morse, M., Symbolic dynamics. Institute for Advanced Study Notes, Princeton, (1966), (unpublished).
  • Nielsen, J., Untersuchungen zur Topologie der geschlossenen Zweiseitigen Flächen. Acta Math., 50 (1927), 189–358.
  • Ornstein, D. & Weiss, B., Geodesic flows are Bernoulli. Israel J. Math., 14 (1973), 184–197.
  • Ratner, M., Anosov Flows with Gibbs measure are also Bernoulli. Israel J. Math., 17 (1974), 380–391.
  • Sinai, Ya., Geodesic flows on manifolds of constant negative curvature. Dokl. Akad. Nauk SSSR, 131 (1960), 752–755; Soviet Math. Dokl., 1 (1960), 335–339.
  • Thurston, W., The Geometry and Topology of 3-manifolds, Proposition 5.9.2. Lecture Notes, Princeton (1978).