Acta Mathematica

On the diophantine equation 1k+2k+...+xk+R(x)=yz

M. Voorhoeve, K. Györy, and R. Tijdeman

Full-text: Open access

Note

An erratum to this article can be found online at http://dx.doi.org/10.1007/BF02392557.

Article information

Source
Acta Math. Volume 143 (1979), 1-8.

Dates
Received: 22 August 1978
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485890031

Digital Object Identifier
doi:10.1007/BF02392086

Rights
1979 © Almqvist & Wiksell

Citation

Voorhoeve, M.; Györy, K.; Tijdeman, R. On the diophantine equation 1 k +2 k +.+ x k + R(x) = y z . Acta Math. 143 (1979), 1--8. doi:10.1007/BF02392086. http://projecteuclid.org/euclid.acta/1485890031.


Export citation

References

  • Györy, K., Tijdeman, R. & Voorhoeve, M., On the equation 1k+2k+...+xk=yz. Acta Arith., 37 to appear.
  • Le Veque, W. J., On the equation ym=f(x). Acta Arith., 9 (1964), 209–219.
  • Rademacher, H., Topics in Analytic Number Theory. Springer Verlag, Berlin, 1973.
  • Schäffer, J. J., The equation 1p+2p+3p+...+np=mq. Acta Math., 95 (1956), 155–159.
  • Schinzel, A. & Tijdeman, R., On the equation ym=P(x)Acta Arith., 31 (1976), 199–204.
  • Shorey, T. N., van der Poorten, A. J., Tijdeman, R. & Schinzel, A., Applications of the Gel'fond-Baker method to Diophantine equations. Transcendence Theory: Advances and Applications, pp. 59–78, Academic Press, 1977.