Acta Mathematica

Subellipticity of the $\bar \partial$ -Neumann problem on pseudo-convex domains: Sufficient conditionsproblem on pseudo-convex domains: Sufficient conditions

J. J. Kohn

Full-text: Open access

Note

This work was done in part while the author was a Guggenheim Fellow. This research was also supported by a National Science Foundation project at Princeton University.

Article information

Source
Acta Math. Volume 142 (1979), 79-122.

Dates
Received: 3 May 1978
First available in Project Euclid: 31 January 2017

Permanent link to this document
http://projecteuclid.org/euclid.acta/1485890016

Digital Object Identifier
doi:10.1007/BF02395058

Zentralblatt MATH identifier
0395.35069

Rights
1979 © Almqvist & Wiksell

Citation

Kohn, J. J. Subellipticity of the $\bar \partial$ -Neumann problem on pseudo-convex domains: Sufficient conditionsproblem on pseudo-convex domains: Sufficient conditions. Acta Math. 142 (1979), 79--122. doi:10.1007/BF02395058. http://projecteuclid.org/euclid.acta/1485890016.


Export citation

References

  • Bedford, E. & Fornaess, J. E., A construction of peak functions on weakly pseudo-convex domains. Preprint.
  • Bloom, T. & Graham, I., A geometric characterization of points of type m on real hypersurfaces. J. Differential Geometry, to appear.
  • Boutet De Monvel, L. & Sjöstrand, J., Sur la singularité des noyaux de Bergman et de Szegö. Soc. Math. de France Astérisque, 34–35 (1976), 123–164.
  • Cartan, H., Variétés analytiques reélles et variétés analytiques complexes. Bull. Soc. Math. France, 85 (1957), 77–99.
  • Catlin, D., Boundary behaviour of holomorphic functions on weakly pseudo-convex domains. Thesis, Princeton Univ. 1978.
  • D'Angelo, J., Finite type conditions for real hypersurfaces. J. Differential Geometry, to appear.
  • D'Angelo, J., A note on the Bergman kernel. Duke Math. J., to appear.
  • Derridj, M., Sur la régularité des solutions du problème de Neumann pour $\bar \partial$ dans quelques domains faiblement pseudo-convexes. J. Differential Geometry, to appear.
  • Derridj, M. & Tartakoff, D., On the global real-analyticity of solutions of the $\bar \partial$ -Neumann problem. Comm. Partial Differential Equations, 1 (1976), 401–435.
  • Diederich, K. & Fornaess, J. E., Pseudoconvex domains with real-analytic boundary. Ann. of Math., 107 (1978), 371–384.
  • Egorov, Yu. V., Subellipticity of the $\bar \partial$ -Neumann problem. Dokl. Akad. Nauk. SSSR, 235, No. 5 (1977), 1009–1012.
  • Ephraim, R., C and analytic equivalence of singularities. Rice Univ. Studies, Complex Analysis, Vol. 59, No. 1 (1973), 11–31.
  • Fefferman, C., The Bergman kernel and biholomorphic mappings. Invent. Math., 26 (1974), 1–65.
  • Folland, G. B. & Kohn, J. J., The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies, No. 75, P.U. Press, 1972.
  • Greiner, P. C., On subelliptic estimates of the $\bar \partial$ -Neumann problem in C2. J. Differential Geometry, 9 (1974), 239–250.
  • Greiner, P. C. & Stein, E. M., On the solvability of some differential operators of type □b, preprint.
  • Greiner, P. C. & Stein, E. M., Estimates for the $\bar \partial$ problem., Math. Notes No. 19, Princeton University Press 1977.
  • Henkin, G. M. & Čirka, E. M., Boundary properties of holomorphic functions of several complex variables. Problems of Math. Vol. 4, Moscow 1975, 13–142.
  • Hörmander, L., L2 estimates and existence theorems for the $\bar \partial$ operator. Acta Math., 113 (1965), 89–152.
  • —, Hypoelliptic second order differential equations. Acta Math., 119 (1967), 147–171.
  • —, Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math., 83 (1966), 129–209.
  • Kashiwara, M., Analyse micro-locale du noyau de Bergman. Sem. Goulaouic-Schwartz 1976–1977. Exposé No VIII.
  • Kerzman, N., The Bergman-kernel function: differentiability at the boundary. Math. Ann., 195 (1972), 149–158.
  • —, Hölder and Lp estimates for solutions of $\bar \partial u = f$ in strongly pseudo-convex domains. Comm. Pure Appl. Math., 24 (1971), 301–379.
  • Kohn, J. J., Lectures on degenerate elliptic problems. Proc. CIME Conf. on Pseudo-differential Operators, Bressanone (1977), to appear.
  • —, Sufficient conditions for subellipticity on weakly pseudo-convex domains. Proc. Nat. Acad. Sci. U.S.A., 74 (1977), 2214–2216.
  • —, Methods of partial differential equations in complex analysis. Proc. of Symp. in Pure Math., vol. 30, part 1 (1977), 215–237.
  • —, Global regularity for $\bar \partial$ on weakly pseudo-convex manifolds. Trans. Amer. Math. Soc., 181 (1973), 273–292.
  • —, Boundary behaviour of $\bar \partial$ on weakly pseudo-convex manifolds of dimension two. J. Differential Geometry, 6 (1972), 523–542.
  • Kohn, J. J. & Nirenberg, L., A pseudo-convex domain not admitting a holomorphic support function. Math. Ann., 201 (1973), 265–268.
  • —, Non-coercive boundary value problems. Comm. Pure Appl. Math., 18 (1965), 443–492.
  • Krantz, S. G., Characterizations of various domains of holomorphy via $\bar \partial$ estimates and applications to a problem of Kohn, preprint.
  • —, Optimal Lipschitz and Lp regularity for the equation, $\bar \partial u = f$ on strongly pseudo-convex domains. Math. Ann., 219 (1976), 223–260.
  • Lieb, I., Ein Approximationssatz auf streng pseudo-konvexen Gebieten Math. Ann., 184 (1969), 55–60.
  • Lojasiewicz, S., Ensembles semi-analytiques. Lecture note (1965) at I.H.E.S.; Reproduit no A66-765, Ecole polytechnique, Paris.
  • Narasimhan, R., Introduction to the theory of analytic spaces Lectures notes in Math. No. 25, Springer Verlag 1966.
  • Range, R. M., On Hölder estimates for $\bar \partial u = f$ on weakly pseudoconvex domains, preprint.
  • Rothschild, L. P. & Stein, E. M., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137 (1976), 247–320.
  • Tartakoff, D., The analytic hypoellipticity of □b and related operators on non-degenerate C-R manifolds, preprint.
  • Treves, F., Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and application to the $\bar \partial$ -Neumann problem, preprint.
  • Spencer, D. C., Overdetermined systems of linear partial differential equations. Bull. Amer. Math. Soc., 75 (1969), 176–239.
  • Sweeney, W. J., The D-Neumann problem. Acta Math., 120 (1968), 223–277.
  • —, A condition for subellipticity in Spencer's Neumann problem. J. Differential Equations, 21 (1976), 316–362.