Part B

Metarecursion

Metarecursion theory lifts classical recursion theory (CRT) from the natural
numbers to the recursive ordinals via definitions in hyperarithmetic terms. It makes
precise the vague idea that IT}-ness is analogous to recursive enumerability. As a
generalization of classical recursion theory, it is strong enough to carry out the
solution of Post’s problem and the construction of a maximal set. Thus priority
arguments make sense in the context of I1} sets, and supply results not obtainable
by more direct means. As an outgrowth of hyperarithmetic theory, it provides a
concrete introduction to the fundamentals of a-recursion beyond w.






Chapter V
Metarecursive Enumerability

With the aid of a IT{ set of unique notations for recursive ordinals, the fundamental
notions of classical recursion are lifted to metarecursion. “Finite” is raised to
“metafinite”, “recursively enumerable” to “metarecursively enumerable”, and
“Turing reducible to” “metarecursive in”. A set is said to be regular if its inter-
section with every metafinite set is metafinite. It is shown that each metarecursively
enumerable set has the same metadegree as some regular, metarecursively
enumerable set.

1. Fundamentals of Metarecursion

Metarecursion theory originated in Kreisel’s observation that hyperarithmetic
subsets of I} sets of natural numbers behave much like finite subsets of recursively
enumerable sets. (A similar observation was made independently by Hartley
Rogers with respect to Rice’s theorem on indices.) The natural enumeration of a I}
set in w$X steps yields a hyperarithmetic set at each step, just as the enumeration of
a recursively enumerable set yields a finite set at each step . If 4 is I1} , then there is
a recursive function f such that

(x)[xed e f(x)e0]

(Theorem 5.4.1). Let
Ay = {x|1 ()] < 8}.

Then A =uU {46 <w$*}, and each A; is hyperarithmetic (Lemma 2.4.II).
Takeuti (1960) was the first to generalize recursion theory from natural numbers to
ordinals; he replaced recursive enumerability by a schematic approach equivalent
to X, definability. Kreisel was the first to point out that a generalization of
recursion theory ought to pay special attention to the concept of finiteness in
addition to that of recursive enumerability. His insight went beyond the idea that
finite computations should be replaced by certain infinite ones. For inspiration he
drew on model theory. He proved (Kreisel 1961, 1965): a I1} set A of axioms of w-
logic has a model if every hyperarithmetic subset of A has a model. His result
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suggested that generalizations of the compactness theorem of first order
logic ought to take generalizations of finiteness into account, and that one such
generalization, in the context of I1! sets, was hyperarithmeticity.

Kreisel also maintained that any generalization of recursion theory worthy of
investigation should be able to support the priority method of Friedberg and
Muchnik. In particular it should yield a positive solution to Post’s problem, that is
incomparable degrees of recursively enumerable sets. Spector proved what some
thought was a negative solution of Post’s problem for IT! sets of numbers, when he
showed that every non-hyperarithmetic I1! set has the same hyperdegree as
Kleene’s O (Proposition 7.2.II). Kreisel took an opposing view of Spector’s result.
The set of natural numbers was not the correct domain when recursively
enumerable was replaced by II!. Since finite was akin to hyperarithmetic, it
followed that r.e. sets of numbers were akin to I1! sets of hyperarithmetic sets. With
o replaced by HYP, Spector’s negative argument no longer worked.

Another reason for changing the domain came from consideration of Post’s
theorem: a set is recursive iff both it and its complement are r.e. With domain w the
Post theorem became: a set is hyperarithmetic iff both it and its complement are
I1{. Thus with domain , recursive became akin to hyperarithmetic, a connection
ruled out by the equating of hyperarithmetic with finite.

A further argument against Spector’s theorem as a negative solution to Post’s
problem lay in the difference between Turing and hyperarithmetic reducibility. A
Turing reduction procedure P consists of a recursively enumerable sequence of
finite computations. A set B is reduced by applying to B those elements of P that fit
B, those computations based on membership statements true of B. A hyperarith-
metic reduction procedure Q fails to resemble a T} sequence of hyperarithmetic
computations. Q does not specify computations in advance. If Q is applied to a
non-hyperarithmetic B, then the resulting computations are hyperarithmetic in B
rather than hyperarithmetic.

Kreisel’s idea that I1} sets of hyperarithmetic sets of numbers correspond to
recursively enumerable sets of numbers with respect to priority arguments was
sound and marked the beginning of metarecursion theory. Suppose for a moment
that a metarecursively enumerable set is defined to be a I} set of hyperarithmetic
sets of numbers. Then a metarecursive set is a metarecursively enumerable set
whose complement with respect to the domain of hyperarithmetic sets is also
metarecursively enumerable. And a metafinite set is a hyperarithmetic collection of
hyperarithmetic sets. In short meta r.e. means I1] on HYP, metarec. means
A}l on HYP, and metafinite means hyperarithmetic. Kreisel conjectured, rightly as
it turned out, that metarecursively enumerable sets would be amenable to priority
arguments. The use of hyperarithmetic sets as individuals was much too awkward,
and soon gave way to indices, then to notations for recursive ordinals, and finally
to recursive ordinals as in the next subsection.

1.1 Definition of Metarecursive. Let Q be a I} set of unique notations of recursive
ordinals (Theorem 2.4.IT1). Let n: 0¥ — Q take each recursive ordinal to its unique
notation. Thus |n(f)| = B.
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Assume A < w$*. A is called metarecursively enumerable (Kreisel and Sacks
1963) if n[A]is II}. (n[A] = {n(a)lac A}.) A is called metarecursive if A and
@$¥ — A are metarecursively enumerable. A is said to be metafinite if n[A] is
hyperarithmetic.

The choice of Q makes no difference. Suppose Q, and Q, are I1} sets of unique
notations. Let 8: @, — Q, be the unique map such that |0(n)| = |n|. Then 0(x) = y iff

(1) xeQ, & yeQ, & (Ef)[fis an order-preserving map of Q@ * onto Q; ”].

(@~ is {z|zeQ; & z <ox}.) The f of (1), if it exists, is unique, hence hyper-
arithmetic. Thus the graph of 8 is I1}. Let n;: @$* — Q, take each recursive ordinal
to its unique notation in Q;. Then

n [A]is I1! iff n,[A]is I},

since n, = 6n;.
Let ® € w$* x w$¥ be a partial function. ¢ is said to be partial metarecursive if

{<n(@), n(B)>1p(®) = B}
is I11.

1.2 Proposition. Let K, A < ¥
(i) K is metafinite < K is metarecursive and bounded above by some B < w$¥.
(ii) A is meta r.e.«> A is the range of a partial metarecursive function.
(iii) If K is metafinite, and ¢ is partial metarecursive and defined on K, then ¢[K]
is metafinite.
(iv) Assume A S w. A is metarecursively enumerable « A is 1. A is metafinite —
A is hyperarithmetic.

Proof

(i) Suppose K is metafinite. Then n[K ] is hyperarithmetic, Q — n[K]is I1}, so K
is metarecursive. By Spector’s bounding theorem (5.6.1), there is a b € O such that K
is bounded above by |b].

Suppose K is metarecursive and bounded above by |b|. Then n[K] = 0,nQ =
0, and o —n[K] = (w — Q) u(Q, —n[K]). Since n[K] and Q —n[K] are I},
and Q, is r.e. (3.5.), n[K] must be A].

(ii)) Let f be the function whose graph is

{<n(x),n(y)>1¢(x)=y}.

Then n[¢[K]] =f[n[K]]. The latter is A} (as in the proof of Proposition 1.7.1),
since n[K] is hyperarithmetic and f'is partial IT}.
(iv) Assume A4 < . n[w is hyperarithmetic. Hence Ais 1} &> n[A]is 1. O

Proposition 1.2 (i) suggests that finite, in the context of recursion theory, is
simply recursive and bounded. It seems hard to believe that no argument in classical
recursion theory needs the fact that a finite set has a greatest element, but this
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appears to be the case. Proposition 1.2(iii) is the most important principle of
metarecursion theory. In Part C it will be seen to be equivalent to the fact that
L(w§¥) satisfies £, replacement, the key principle of a-recursion theory. Pro-
position 1.2(iv) makes possible the application of metarecursion theory to I1} sets,
and in particular the construction of a maximal I} set via a Friedbergian priority
argument.

1.3 Bounded Meta r.e. Sets. Lifting arguments from classical recursion theory to
metarecursion theory will not in general be routine. It will not as a rule suffice to
prefix all key words with “meta”. The reader may already have noticed the
following significant difference between metarecursion and classical recursion.
There exists a bounded, meta r.e. set that is not metarecursive. The simplest
example is Kleene’s O according to Proposition 1.2(iv). In the setting of classical
recursion theory every bounded set is finite, hence recursive. Bounded, non-
metarecursive, meta r.e. sets do not belong to the realm of pathology. They are a
source of technical problems whose solutions illuminate the workings of recursion
theory.

1.4 Theorem (Enumeration). For each n > 1 there is a partial metarecursive function
¢n(z,x4, . .., x,) such that: for each partial metarecursive Y(x,, . . . , x,) there is an
e < w such that

Y(xy, .. osXx,) 2 dule, xq, ...y Xy)

Proof. Letn = 1. As in subsection 5.2.1, each I1} predicate P,(x, y) can be put in the
form

(f) (Bu)T(f(u), &, x, y)

for some e determined by P. The proof of Kreisel’s uniformization Theorem (2.3.II)
yields a recursive function g such that g(e) is an index for the IT} predicate that
uniformizes

P.(x,y) & xeQ & yeQ.
Define ¢, (e, x) ~ y by
(f) (Bw) T(f (u), g(e), n(x), n(y)).

(n is the notation function of subsection 1.1.) [

1.5 Lemma. There exist metarecursive functions j and k such that: for each metafinite
set K, there exists a unique 6 < w$* such that

K={x|x<j®) & k(6 x)=0}.

Proof. Let Q be a 11 set of unique notations as in subsection 1.1, and let I be the set
of all indices of hyperarithmetic subsets of Q. To be precise, {e,b)el if be Q and
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{e}Hs is a subset of Q. I is I1}. <, a well-ordering of 1, is defined by:

ey, by ) <<ep, by (lby] <|bsl)
vV (Iby|=1b,| and e, <e,).

For each bel, let G, be the subset of Q indexed by b. I,, the I1] set of unique indices
for hyperarithmetic subsets of Q, is defined by:

bel,«bel and (y)[y<b-G,#G,].

There exists a partial recursive function t whose domain includes Q, and which
maps Q 1-1 onto I,. t can be thought of as enumerating I, without repetitions. ¢ is
defined by effective transfinite recursion on Q. For each b, t(b) is the result of
selecting a member of I, — ¢ [ b. The selection is made via Kreisel’s uniformization

Theorem (2.3.I1). Let P(e, x) be the e-th I1} set. Then 2.3.I1 supplies a partial IT}
function A such that for all e:

(Ex)P(e,x) — h(e) is defined & P(e, h(e)).
The recursion equation for ¢ is

t(b) = h(e(b)),
where e is a recursive function such that

%P(e(b),x) =1, —tIb.

Define
k(y, x) = 0 x€ Gy n(y))

and 1 otherwise.
The predicate

b,ceQ and (x)[xeG,p— x| <|c|]

is T}, so another Kreisel uniformization allows ¢ to be construed as a partial I1}
function g of b. Define

i) =gtm@p)). O

1.6 Indices for Metafinite Sets. Let j and k be the metarecursive functions of 1.5.
For each f define

K,={x|x<j(f) and k(B,x)=0}.
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According to Lemma 1.5 there is for each metafinite K just one f such that K = K.
B is said to be the index of K regarded as a metafinite set. § is intended to be a
strong index. Post (1944) distinguished between weak and strong indices for finite
sets. A strong index for a finite set is an instruction for recursively enumerating the
set together with an instruction for stopping. A weak index consists simply of the
first instruction. Strong indices are needed in recursion theory so that finite sets will
live on the same level of complexity as their elements.

Let f be a partial function from w$¥ into the set of metafinite sets. fis said to be

partial metarecursive if there exists a partial metarecursive function g such that
f(6) =~ K5 for all 6.

1.7 Proposition. If H is metafinite, then U {K4|d€ H} is metafinite.

Proof. Let K be the union in question. Then
xeKe(Ed)[6eH & x<jd) & k(6,x)=0]

The definitions of Subsection 1.1. make it easy to verify that K and w{¥ — K are
metarecursively enumerable. Thus K is metarecursive. By Proposition 1.2(iii),
j[H] is metafinite, hence bounded, so K is bounded. Then K is metafinite by
Proposition 1.2(i)). O

Note that the proof of Proposition 1.7 also shows K is a metarecursive function
of H in the sense of subsection 1.6.

1.8 Proposition (Transfinite Recursion). If I is metarecursive, then the unique
solution of

fO=1(f10) ©<of)

is metarecursive.

Proof. As in set theory, let F be the set of all g such that:

(a) g is a metafinite function;
(b) domain of g is a recursive ordinal;
(c) g(6)=1(g [ ) for all 6edom g.

F is metarecursive because I is. By induction on v, F is consistent: if g,, g, € G and
yedom g, ndom g,, then g, (y) = g,(y). Define f = U F. f'is partial metarecursive
with domain d € w$*. Suppose d < w$¥. Then g, defined by

gld=f & g(d)=1I(f),

belongs to F. [
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1.9 Proposition. If A is metarecursively enumerable but not metafinite, then A is the
range of a one-one metarecursive function.

Proof. n[A] is I1}. By Theorem 5.4.1 there is a recursive ¢ such that xen[A] iff
t(x)e 0. Let
A7 = {3]t(n(6))] < 7}-

A? is a metarecursive function of y. Define
fl@y+my=n~t(m) if men[A"—u_, A"].

Let f(w-y +m)= — 1 otherwise. f is metarecursive and enumerates 4 without
repetitions save for the spurious value —1. A transfinite recursion is needed to
eliminate — 1. Define g by

g(0) = px[x >sup*g[é] & f(x)#—1].

ux is read “the least ordinal x such that”. sup™ B is the least ordinal greater than
every ordinal in B. Since n[ A] is not hyperarithmetic, there are arbitrarily large x’s
such that f(x) # — 1. It follows from Proposition 1.8 that g is metarecursive. Let
h(6) = f(g(6)). Then h enumerates A without repetitions. [

1.10-1.16 Exercises

1.10. Prove Proposition 1.2(ii).
1.11. Verify that k and j, defined in the proof of Lemma 1.5 are metarecursive.
1.12. Verify that F, defined in the proof of Proposition 1.8, is metarecursive.

1.13. Show that the set of partial metarecursive functions is closed under compo-
sition.

1.14. Suppose fis metarecursive and K is metafinite. Show f | K is metafinite.

1.15. Formulate and prove: the class of metarecursive sets is closed under com-
plementation, metafinite unions, and metafinite intersections.

1.16. Formulate and prove: the class of metarecursively enumerable sets is closed
under meta r.e. unions and metafinite intersections.

2. Metafinite Computations

This section is a sketch of an equation calculus for computing partial metarecursive
functions, a calculus that extends Kleene’s by allowing certain infinite
computations. A sketch is sufficient, because the calculus has little practical use. It
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is included only to clarify the concepts of metarecursive function and metarecursive
reducibility.

Implementation of the calculus gives rise to metafinite computations. This is seen
to be necessarily so, if the definition of metarecursive function is viewed in the light
of the remarks made concerning the natural enumeration of O in the proof of
Theorem 2.2.1. Suppose f is metarecursive. Then

fx) =y nx),n(y))eA

for some I1} A < 0. Thus the computation of a value of f corresponds to showing
some number belongs to O. The verification of meO is accomplished by
enumerating O up to stage |m|. The resulting object is hyperarithmetic, hence
metafinite. The object has the tree-like appearance of a wellfounded computation if
it is developed backwards, as in the proof of Theorem 3.5.1, where the predecessors
of m in O are generated by starting with m and proceeding downward along
branches that end with 1.

2.1 An Infinitary Calculus. A calculus of the sort presented here was first devised
independently by Tugué (1964), and by Levy (1963) and Machover (1961). Vari-
ations were later studied by Kripke (1964) and Platek (1966). All are inspired by the
Kleene calculus for classical recursion theory. The sketch below follows Kripke
(1964). The primitive symbols are:

numbers y for each y < wf¥;

variables x, y, z, . . . ranging over w$¥;

n-place function symbols f, g, h, . . . ;

and 3 (there exists), V(for all), < (less than), = (equals), and ' (successor).

Terms are defined recursively. Numerals and variables are terms. If ¢ is a term,
then ¢’ is a term. If ¢,, . . . , t, are terms and fis an n-place function symbol, then
f(ty,...,t,)is aterm. If t, and t, are terms with x not occurring freely in t,, then
(Ex < to)t, and (Vx < ty)t, are terms.

If t, and ¢, are terms, then t, = ¢, is an equation.

As in Kleene (1952) there are finitely many substitution rules for deriving an
equation e from a set S of equations. For example y + 1 is substituted for (y)’, or y
for t if t =y has already been derived. Kleene’s rules are finitary in that each
operates on a finite set of premises. It follows that his computatons are finite,
because a wellfounded tree with finite branching is necessarily finite. The calculus
for metarecursion has only one infinitary rule, W. W operates on

{e} u{t(d)=0[6 <y}

and yields as conclusion the result of substituting 0 for all occurrences of
(Vx < y)t(x) in e. W is seen to be a kind of w-rule if 0 is taken to mean true.

Let E be a finite set of equations. The set C(E) of all equations computable from
E is defined by transfinite recursion.

C(0,E)=E.
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ee C(B + 1, E) if e is an immediate consequence of equations in C(f, E) via a rule
whose application mentions no ordinals greater than f + 1.

C(i, E)= U{C(B,E)|B < 4} if Ais a limit.
C(E)= C(wSK, E).

C(E) has a natural enumeration similar to the one given for O in the proof of
Theorem 2.2.1. It follows that C(E) is metarecursively enumerable, and that C(f, E)
is metafinite for each g < w{¥. There is no difficulty in metarecursively assigning
recursive ordinals to equations as Godel numbers.

Each equation in C(E) owes its existence to a metafinite computation with roots
in E. Abstractly, each computation is simply a metafinite, wellfounded tree. The set
Z of all computations can be defined by a recursion that parallels the one that
defines C(E) and so is metarecursively enumerable. It is worth noting that Z is not
metacursive (Exercise 2.3), since classical recursion theory suggests otherwise.

2.2. Metacomputable Functions. Let ¢ = w$* x »$* be a partial function. ¢ is said
to be metacomputable if there exists a finite set E of equations with principal
function letter f such that for all a, B < w$¥:

ey ¢(@) = B (f(@ = BeC(E).

The metacomputable partial functions are the same as the metarecursive partial
functions. Checking this assertion involves many tedious details but the ideas
needed are straightforward and are familiar to readers of Kleene (1952).
Suppose ¢ is metacomputable. By (1) the graph of ¢ is metarecursively
enumerable, since C(E) is. Hence ¢ is partial metarecursive according to the
definitions of subsection 1.1.
The other direction is more difficult. Suppose ¢ is partial metarecursive. Thus

@ {{n(@),n(B)>|p(a) = B}

is [T}, as in subsection 1.1, and so is many-one reducible to O vi a some ordinary
recursive function g. To see that O is the range of a metacomputable function, recall
the equations that yield the natural enumeration of 0. Since g is metacomputable
via Kleene’s equation calculus, it follows that (2), is the range of a metacomputable
function defined by some finite set E of equations. A slight modification of E
defines ¢.

The most important point suppressed above concerns the consistency of E. In
general it is simple to find an E that defines a given partial metarecursive ¢.
“Simple” means that

©) d(@) =B —(f(2)=B)eC(E)

is immediate. The converse of (3), the consistency of E, can be troublesome. Kleene
(1952) handles the problem in a proof theoretic fashion. He allows substitutions
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only under certain narrow restrictions, so narrow no inconsistent computations
can slip by. For example, consider the usual recursion equations for +. The base
equation is

Q) f(x,0)=x.

It allows the computation of f(m, 0) = m for any natural number m. What is to
prevent the computation of f(m,0) = n for some m # n? If such a computation
existed, it might have the form

)] fm,t)=n, t=0Ff(m,0)=n.

But (5) is not allowed by the Kleene rules. The principal function letter foccurs only
on the left sides of equations, and the only substitution permitted on the left is that
of a numeral for a variable. Hence f(m, 0) can be obtained on the left only by
starting with (4) or with an equation whose left side is f(m, y). But the recursion
equations for + whose left sides have variable second arguments have right sides
that cannot give rise to 0, for example (g(x,y))’. In short the restrictions on
Kleene’s rules make it possible to trace an inconsistency back to its source.

2.3-2.4 Exercises

2.3. Formulate and prove: the set of all metafinite computations is not
metarecursive.

2.4 (Kripke 1964). Show C(E, 0S¥ + 1) = C(E, oS¥).

3. Relative Metarecursiveness

Classical recursion theory centers on the notion of Turing reducibility (or relative
recursiveness). The corresponding notion for metarecursion theory is at first
obscure, because it is not clear which formulation of Turing reducibility should be
lifted. As it turns out, the choice matters a great deal. One formulation, when lifted,
fails to be transitive, and so does not lead to a suitable concept of degree. In general
two sets are said to have the same degree if each is reducible to the other. If the
given notion of reducibility is transitive (and reflexive), then the derived concept of
degree is an equivalence relation. The concept of degree is essential to the study of
recursively enumerable sets, and of Post’s problem, several generalizations of which
are solved in this book. The first is the metarecursive version of Chapter VI.

3.1 Weakly Metarecursive In. One formulation of Turing reducibility for sets
A, B < w s as follows. A Turing reduction procedure ¢ is a recursively enumerable
set of quadruples {h,j,n,i). h and j are finite subsets of w; and n, ie w. cB, the
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complement of B, is w — B. A is Turing reducible to B via ¢ if

(1a) ne A< (Eh)(Ej)[<h,j,n,0)e¢p & h< B & j < cB]
and
(1b) n¢ A (Eh) (Ej)[{(h,j,n 1>e¢p & h< B & j < cB]

hold for all n. To decide ne A4 (from B) enumerate the quadruples in ¢ until one is
found that satisfies B. Such a quadruple has the form <{h, k, n, i) and the property
that h < Band K < ¢B. Then N € 4 iff i = 0. The associated computation is finite,
because only finitely much of ¢ is enumerated, and only finitely much of B is
called for. Let <, denote Tuning reducibility.

To see that < ; is transitive, suppose A <, Bvia ¢, and B < ;C via y. To decide
ne A (from C) enumerate ¢ and Y simultaneously. If ne A4, then the associated
computation, in essence, is:

(2a)  <(h,j,n0)e¢

(2b)  (X)xenl{hysxs %, 0> €Y]

(20)  (P)ye;[Khysdys y10€Y]

@d)  U{hlvehuj}<=C, U{jlvehuj}ccC.

By (2a) neA if h=< B and j<cB. By (2b) h<B if U{h,/xeh} < C and
U{j,lyej} =cC.

If n¢ A, then the associated computation begins with {h,k,n,1)e¢ and
otherwise resembles (2).

The only combinatoric principle used above is: a finite union of finite sets is
finite. A glance at Proposition 1.7 suggests that the above demonstration lifts to
metarecursion theory, but that is not the case. To see why not, consider
A, B < wf*. c¢B, the complement of B, is now w$* — B. Define A as weakly
metarecursive in B (in symbols 4 <, B) by:

(3a) 6eA—(EH)(E))[{H,J,6,0>e¢p & H= B & J = cB]

and

(3b) 8¢ A (EH)(E))[<H,J,5,1>e¢ & HSB & Jc<cB],

where ¢ is metarecursively enumerable, H and K are metafinite, and 6 < w$X. (3)is
the most obvious lifting of (1). The attempt to lift (2) breaks down with (2d). In
general

4) u{H,JveHLJ}
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is not metafinite despite the fact that Hu J and H, (ve H u J) are metafinite. (4) is
not a metafinite union of metafinite sets in the sense required by Proposition 1.7.
For each v let 6(v) be the strong index of H,. Thus H, = K, as in subsection 1.6.
(4) becomes

) U{K;snlveHUJ}.
To apply Proposition 1.7 to (5) it is necessary to know

(6) {6(v)|lve H U J} is metafinite.

The truth of (6) depends on C. 6(v) is defined by enumerating ¢ and ¢
simultaneously and occasionally referring to C. If the definition of &(v) for all
ve Hu J draws only on a metafinite set of membership facts about C, then (6) is
true. Nothing in (3) guarantees such limited use of C.

Driscoll (1968) showed that <, fails to be transitive even on the metarecursively
enumerable sets. His theorem will be proved in Chapter VI.

3.2 Metarecursive In. The remedy for Driscoll’s troublesome counterexample was
found by Kreisel. Another formulation of Turing reducibility is:

(1a) j & A< (Eh)(Ek)[{h,k,j,0)edp & h= B & k< cB]
and
(1b) j S cA—(Eh)(EK)[{hk,jl1)>edp & h=< B & k < cB]

for all finite j € w. 4, B < w, h and k are finite, and ¢ is recursively enumerable.
The symmetry of (1) with respect to finite neighborhood conditions makes the
transitivity of <, immediate. A finite set of membership questions about A4 is
reduced to a finite set about B. Suppose A < B via ¢, and B < ; C via . To show
A <;C enumerate ¢ and Y simultaneously. If j = A4, then the associated com-
putation is:

2  <hkj0>eq;
<h0’k0’h70>’ <h1,k1,k,1>e|//;
houh, €C;koUk, = cC.

Ifj < cA, then the computation begins with < h, k, j, 1 > € ¢ and otherwise resembles
@). |

The only combinatoric principle used above is: the union of two finite sets is
finite. Consequently the above demonstration lifts instantly to metarecursion
theory.
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Let A, B be sets of recursive ordinals, J, H be metafinite and ¢ be metarecursively
enumerable. Say A is metarecursive in B (in symbols 4 <,, B) via ¢ if

(3a) J < A-(EH)(EK)[(H,K,J,0)e¢ & H<B & K ccB]
and

(3b) J<ccA—(EH)(EK)[(H,K,J,1)e¢p & H= B & K = cB] hold for all
metafinite J. (2) lifts to show <, is transitive.

Two sets of recursive ordinals have the same metadegree if each is metarecursive
in the other (in symbols 4 =, B).

3.3 Post’s Method. Post in a celebrated paper (1944) liberated classical recursion
theory from formal arguments by presenting recursive enumerability as a natural
mathematical notion safely handled by informal mathematical procedures. He also
stressed what may be called a dynamic view of recursion theory. For example, he
proves the existence of a simple set S by giving instructions in ordinary language
for the enumeration of S and then verifying that the instructions do in fact produce
a simple set. A formal approach to S would refer to formulas or equations from
some formal system. A static approach would attempt to define S by some explicit
formula. The advantages of Post’s informal, dynamic method are considerable.
Without it arguments in classical recursion theory would be lengthy and hard to
devise.

His method, and its advantages, lift to metarecursion theory. Consider the
proposition:

(1) If A is metarecursively enumerable, then the collection of all metafinite subsets
of A is metarecursively enumerable. Formal static proof of (1): Recall I, defined in
the proof of Lemma 1.5. I, is a I} set of unique indices for the hyperarithmetic
subsets of Q. n[A4] is I1}, so

(e,byel, & {e}f»cn[A]

is also IT}, and (1) is proved.

Informal dynamic proof of (1): Metarecursively enumerate A. A? (defined in the
proof of Proposition 1.9) is that part of 4 enumerated prior to stage y. If K; < A,
then K; < A" for some y, < w$*. If K; < A", then enumerate 6. Thus the
enumeration of 4 gives rise to a simultaneous enumeration (of the indices) of the
metafinite subsets of A. The existence of y, follows from Proposition 1.2(iii). Let

h(x) be wuy[xeAd’].

h is partial metarecursive and defined for all x e K ;. So h[K;] is metafinite, hence
bounded by some d,.

From now on proofs in metarecursion theory will follow the informal dynamic
style originated by Post.
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3.4 Proposition. Suppose A and ¢ are metarecursively enumerable, and for all
metafinite K,

K = cA—(EH)EIJ)[{H,J,K)ep & H= B & J = cB].
Then A < yB.
Proof. According to (1) of subsection 3.3, the set of all metafinite subsets of A4 is
metarecursively enumerable. Thus there exists a metarecursively enumerable
such that
KcA-Key
for all metafinite K. O

The next proposition is a technical fact needed in Section 4.

3.5 Proposition. Let A be metarecursively enumerable. Then there exists a meta-
recursively enumerable A* such that A =, A* and

(X)[A* <, X &A% <, X].
Proof. Let A* be {§|K;n A # ¢}. A* is metarecursively enumerable since any
enumeration of A induces a simultaneous enumeration of A*. Proposition 3.4
implies A <, A*, since
W) K;ScAedo¢A*.

There exists a metarecursive function g such that

K, = VUi{K,lyeKs}
Hence

@ K;<S cA* Ky, S cA,

and so A* <,, 4 by Proposition 3.4.
It follows from (1) and (2) that

K; S cA*—g(d)¢ A*.
Consequently A* <, X implies A* <, X. O
3.6 Reducibility for Functions. Suppose <, is a notion of reducibility defined for

sets, for example <, or <,,. <, is extended to functions by identifying functions
with their graphs. Thus

f<,g+ graph (f) <, graph(g).
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(The graph of fis {{x,y>|f(x) = y}.) Similarly
f<,gograph (f) <, 4.

Let ¢, be the characteristic function of A. As far as reducibility is concerned it is
safe to identify A with the graph of ¢ ,. Thus

A<,Beocy<,cp.

Of special interest is f <, 4. It is equivalent to: There exists a metarecursively
enumerable ¢ such that

fx) =y ER)EN(H,J,x,y>edp & HcA & JccA]

for all x, y < wf¥.

3.7-3.8 Exercises

3.7. Define g by K5 = U {K|yeK;}. Show g is metarecursive.

3.8. The equation calculus of Subsection 2.1 is relativized as follows. Let g be an
auxillary function letter. For any B < w$* define A(B) to be

{9(0) =0l6eB} L {g(8) =1|5¢B}.

Define C(E, B) as C(E) was in subsection 2.1 save that C(0, E, B) is E U A(B). Each
equation in C(E, B) owes its existence to a computation of recursive ordinal height,
abstractly a wellfounded tree with roots in C(0, E, B). (If B is not metarecursive,
then some of these computations may not be metafinite objects.) Define C,, (E, B) to
be the subset of C(E, B) based on metafinite computations.

Call A metafinitely computable from B (in symbols A <, B) if for some E with
principal function letter f,

0eAe(f(0)=0)eC,(E,B)
and
0¢A—(f(0)=1)eC,(E,B)

for all § < w§X.
Show A <, ,B—A<,B.

— mc

4. Regularity

A set A < w$¥is said to be regular if A N K is metafinite for every metafinite K. The
main result of this section is: each metarecursively enumerable set has the same
metadegree as some regular, metarecursively enumerable set. This theorem greatly
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facilitates the study of metarecursively enumerable degrees. The definition of
regularity is inspired by its frequent, if hidden, use in classical recursion theory, and
by Go6del’s definition of constructible class, namely a class whose intersection with
each constructible set is a constructible set.

A typical use of regularity in classical recursion theory occurs in the proof of the
enumeration theorem (Kleene 1952). Finite neighborhood conditions are replaced
by finite initial segment conditions in order to obtain an enumeration theorem for.
partial recursive functions relative to A (uniformly), a result that does not lift to
metarecursion theory.

To elaborate let A < w, and {e}* be the e-th function partial recursive
in A. Initially {e}# is defined as in (1) of subsection 3.1. There is a recursively
enumerable ¢ such that {e}“(m) is defined and has the value n iff

1) (hkymnded & he A & k< cA

for some finite h and k. Thus an enumeration of the ¢’s yields an enumeration of the
{e}*’s. It can happen that ¢ is inconsistent, that {e}(m) has more than one value.
Kleene eliminates inconsistencies by giving preference to the “least” neighborhood
condition that A satisfies. Let ¢(i) be the i-th 4-tuple in the recursive enumeration
of ¢. Now define {e}“(m) to have the value n if ¢ (i) satisfies (1) but ¢( j) does not for
allj < i. In order to compute the preferred value of {e}“(m) it is necessary to know
the relation A4 bears to all the finite sets mentioned in ¢(j) (j < i). Since only finitely
many finite sets are involved, the preferred value is determined by a bounded initial
segment of the characteristic function of A. The regularity of A implies that a
bounded initial segment of A is equivalent to a single finite neighborhood
condition.

The initial segment trick is not applicable to metarecursion theory because a
typical 4 < w$¥ is not regular. Machtey (1970) and Ohashi (1970) have shown that
metarecursion theory lacks an enumeration theorem of the functions partial
metarecursive in 4 (uniformly). Thus there is no substitute for the initial segment
trick. But there does remain an enumeration of the many-valued functions partial
metarecursive in 4 (uniformly).

The next proposition expresses the notion of regularity in dynamic form.

4.1 Proposition. Let A be the range of some metarecursive f. Then A is regular iff for
each 6, f eventually enumerates no new member of A less than 6.

Proof. Suppose A is regular. Then A N § is metafinite. For each ye(A4 N d), let g(y)
be the least o such that f(o)=y. Since g is metarecursive, g[ANd] is
bounded. O

The study of recursively enumerable sets in classical recursion theory makes
frequent use of the fact that every recursively enumerable set is regular in the sense
of Proposition 4.1. The regular sets theorem (4.3) makes it safe to assume
metarecursively enumerable sets are regular modulo their metadegrees.
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The next lemma is inspired by an early result of Dekker (1954), and is the
source of regularity in the proof of the regular sets theorem. Suppose A is
metarecursively enumerable but not metafinite. By Proposition 1.9 there is a
metarecursive f that enumerates A without repetitions. Define the deficiency set of f°
to be

D, = {al(EB)p>a(f(B) < f(2))}.

4.2 Lemma
(i) D, is metarecursively enumerable and regular.
(ii) cD; is unbounded.
@iii) If A(=fL[w$*]) is regular, then f[cD,] is unbounded.
(iv) If A is regular, then A <, D,.
(v) D, <yA.

Proof.
(i) Fix y to see D; ny is metafinite. Enumerate D, ny without repetitions as
follows. A new member a of D, Ny is enumerated when there is a ¢ such that

)] o>a & f(0) <f@) & (Do<i<o[f(1)=S(2)].

If there is a bound on the ¢’s satisfying (1), then D, N y is metafinite. Suppose there
is no such bound. If y < ¢, < g, both satisfy (1), then f(¢,) > f(0,). Hence there is
an infinite, descending sequence of ordinals.

(i) Fix y. Let 6 be the infimum of {f(z)|t > y}. Then f~'(6)ecD,.

(ii1) follows from (ii) and Proposition 4.1.

(iv) By (iii)) K < cA4 iff

(E) (f(6) > supK & 8¢D,; & K < cf[5])

for all metafinite K. Now apply Proposition 3.4.
(v) For all metafinite K,

KceDyo | (f@—fle])Scd. O

aeK

4.3 Theorem (Sacks 1966). Each metarecursively enumerable set has the same
metadegree as some regular, metarecursively enumerable set.

Proof. Suppose A is metarecursively enumerable and A Ny is not metafinite. Let
n: w§* - w be metarecursive and one-one. (n could be the notation function of
subsection 1.1.) Then n[ A ny] is metarecursively enumerable but not metafinite.
Let f be a one-one metarecursive function whose range is n[4 N y], and let B be
f[A]. B is not metarecursive, because A is not and

xeA o f(x)eB.
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Let g be a metarecursive function that enumerates B without repetitions. D,, the
deficiency set of g (defined just before Lemma 4.2), is the desired regular set.

By Lemma 4.2 D, is metarecursively enumerable and regular. The concept of
“finitely metarecursive in” (in symbols < ) is useful in showing Dg =, A. Say
U<, VifU <, V via some ¢ that mentions only finite neighborhood conditions.
Note that U <,V and V<, Wimply U <, W.

Observe that

x¢ Dy > (g(x) — g[x]) < cB

and that g(x) is finite. It follows from Proposition 3.4 that

ey D,<,B.
@) B<,A

is a consequence of:

x¢Be>(x¢range f) V (xerange f & f~1(x)¢ A);
(x¢ range f)>x¢n[y] V (xen[y] & n™'(x)¢ A).

From (1) and (2), D, <, A. Hence D, < ), A, because every metafinite subset of cD,
is finite. To prove the latter note that the restriction of g to cD, is strictly increasing.
Hence the ordertype of cD, is the same as that of g[cD,], namely . In addition,
cD, is an unbounded subset of w{* by Lemma 4.2.
To check A <, D,, it suffices to show 4 <, D,, since Proposition 3.5 makes it
safe to assume
X)[A4<,XeA4A<,X].

A <;Band <, is transitive, so it remains only to show B < , D,. But that is the
case, because

m¢Be (Ex)[a¢D, & gl@)>m & mé¢gla]]
foralm<w. 0O

The above proof, much cleaner than the original, is due to S. Simpson. The only
non-effective step is the choice of y. W. Maass has shown that choice to be
eliminable. To be precise he has proved: there exists a metarecursive function t such
that for each J, R; =) R, and R, is regular. (R; is the d-th metarecursively
enumerable set in a standard enumeration.)

Theorem 4.3 is very much a result about metarecursively enumerable degrees. It
fails for some metadegrees below that of Kleene’s O. In fact there is a T < w such
that T is Turing reducible to O and no set of the same metadegree as T is regular
(Macintyre 1973).

It will be seen in Part C that Theorem 4.3 generalizes readily from w{* to an
arbitrary X, admissible ordinal a.
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4.4 o-sets. A subset of w§* is said to be an w-set (Owings 1969) if its complement is
unbounded and of ordertype w. Note that the complement of an w-set cannot be
metafinite. A typical w-set is D, in the proof of Theorem 4.3. w-sets will figure
significantly in the proof of Simpson’s dichotomy, Section 3.VI. If C is a meta-
recursively enumerable w-set, then

X[C =<, X C<yX],

since every metafinite subset of cC is finite.
A is said to be metacomplete if A is metarecursively enumerable and

(B)[B meta re. > B <, A].
4.5 Proposition. 4 is metacomplete iff O <, A.
Proof. Suppose O <, A and B is meta r.e. By Proposition 3.5, it is safe to assume
B<,A-B<,A.

Let n: of* — w be one-one and metarecursive. Then n[B] is 1], hence n[B] < ;O
by Theorem 5.4.1. But B < n[B],so B<,4. [

4.6 Theorem (Owings 1969). If D is a metarecursively enumerable w-set, then there
exists a metacomplete T1} set C such that C < ;D.

Proof. Let n be a one-one, metarecursive map of w§* onto 0. Define
t(x)=ué[o¢D & n(d) > x] (x<w),
B={6|6 <tn(d)}, and C=n[B].

t is not metarecursive, so an approximation argument is needed to show C is I1}.
Let D be the range of some metarecursive function f. Define

D’={f(t)|t <o}, and
t(o,x)=udé[0¢D’ & n(d) > x].

t(g, x) is metarecursive. More importantly, for each x, t(s,x) is a non-decreasing
function of ¢ whose limit is t(x). Consequently

B = {$|(Eo)[d < t(o,n(9))]1},
hence B is metarecursively enumerable and C is I1}.
Every metafinite subset of cD is finite, so t < ; D by Exercise 4.7. It follows that

C <D, since for all x < w,

x¢Coxé¢nlt(x)].
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For the metacompleteness of C, assume for the moment that B is an w-set. By
Proposition 4.5 it is enough to show O <, C. Recall xe 0 iff 2*€ 0. If xe O, then

n~1[{x, 25,27, ... }].

is metafinite, hence touches B because B is an w-set. Consequently C touches
{x,2%,...}. Conversely, if C touches {x, 2%, . ..}, then x€ O because C < O.
To see that B is an w-set, suppose there is a y < w$* such that y — B is infinite.
Then
{6|6 <y & & > n(d)}

is infinite, and so {x|x < w & t(x) <y} is infinite. Fix x so that ¢(x) <y and
x > max(n[y — D]). Such an x exists because D is an w-set. t(x)ey — D, so
x > nt(x). But the definition of t implies nt(x) > x. O

4.7-4.8 Exercises

4.7. Suppose C is metarecursively enumerable and every metafinite subset of cC is
finite. Show X <, C implies X <, C. (< is defined in the proof of Theorem
43)

4.8. Call A simple if A is metarecursively enumerable, cA4 is unbounded, and every
metarecursively enumerable subset of cA is bounded. Show each non-meta-
recursive, meta r.e. set has the same metadegree as some simple set.





