XI. Changing Cofinalities;
Equi-Consistency Results

80. Introduction

We formulate a condition which is (strongly) preserved by revised countable
support iteration, implies R; is not collapsed, no real is added and is satisfied
e.g. by Namba forcing, and any X;-complete forcing. So we can iterate forcing
notions collapsing Ns but preserving R; up to some large cardinal.

Our aim is to improve the results of chapter of X to equi-consistency
results. If you want to add reals, look at Chapter XV. To prove the preservation
we use partition theorems and A-system theorems on tagged trees (3.5, 3.5A,
3.7 (and 4.3A)). Some of them are from Rubin and Shelah [RuSh:117], see
detailed history there on pages 47, 48 and more on mathematics see [RuSh:117],
[Sh:136] 2.4, 2.5 (pages 111 — 113).

§1. The Theorems

1.1 Discussion. In this chapter we list the demands that we would like our
condition to satisfy, and show how, having a condition satisfying these demands
we can prove our theorems. Then, in the following sections we will formulate
the condition and prove it satisfies all our demands. Lastly we shall prove some

more complicated theorems applying the condition.
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The Demands. We will have a condition for forcing notions such that:

(i) If P satisfies the condition then forcing with P does not collapse X; and,
moreover, (when CH holds) it does not add reals.

(ii) If P = Rlim @, where Q is an RCS iteration of forcing notions such that

each of them satisfies the condition then P satisfies it as well.

(RCS iteration was defined in X §1. In 1.9 we will recall its basic properties).
Really we do not get (ii) but a slightly different version (i)', which is as

good for our purpose:

(i) Assume V satisfies: if Q = (P;,Qi i < &) is an RCS iteration, Qg4 is
Levy collapse of 2/P2i+1l1il to R, (by countable conditions), each Q2; sat-
isfies the condition. Then Pj, the revised limit of Q, satisfies the condition
(see also 6.2A).

(iii) If @ = (P;,Q; : i < k) is an RCS iteration as in (ii)’, & is a strongly
inaccessible cardinal and |P;| < & for © < k then Py, the revised limit of
Q, satisfies the x-c.c.

(iv) The condition is satisfied by the following forcing notions:

a. Namba forcing. (See 4.1, it adds a cofinal countable subset to w,
without collapsing w;.) We denote this forcing notion by Nm.

b. Any R;-closed forcing notion.

c. P[S], where S is a stationary subset of wy such that a € S = cf(a) =
w, and P[S] = {f : f is an increasing and continuous function from
a + 1 into S, for some a < w;}. Note that P[S] shoots a closed copy

of w; into S hence collapses Na.

Remark. The condition on P is, by the terminology we shall use, essentially
the {\ < |P| : A regular > N;}-condition; more exactly, the definition of such
a notion is in 6.7, where (ii)’ is proved. Now (iv), holds by 4.4, (iv), by 4.5,
(iv). holds by 4.6, (i) by 3.2 and (iii) automatically follows from 6.3A(1) as in
X 5.3, see 1.13.
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Remark. The preservation theorem in this chapter is in a sense orthogonal to the
one of Chapter X, since here we are not interested in semiproperness of forcing
notions (e.g. Namba forcing may fail to be semiproper, but it always satisfies
the condition in this chapter). In chapter XV we will present a generalization
of the S-condition which also generalizes semiproperness.

Assume we have a condition satisfying all of these demands and let us get

to the proofs of our theorems.

1.2 Theorem. If “ZFC + G.C.H. + there is a measurable cardinal” is consis-
tent then so is “ZFC + G.C.H. + there is a normal precipitous filter D on w;
such that S2 € D”.

Remark.

(1) S2is {@ < ws : cf(a) = N}

(2) By [JMMP]| the converse of this theorem is also true, so we have an
equiconsistency result.

(3) In fact if “ZFC + there is a measurable cardinal” is consistent then so
is “ZFC + G.C.H. + there is a measurable cardinal”, so we can delete

“G.C.H.” from the hypothesis of our theorem.

Proof. We start with a model of ZFC + G.C.H. with a measurable cardinal .
We iterate, by the RCS iteration, forcing with Nm x many times. More exactly
let Q = (P;,Q: : i < &) be an RCS iteration, Q; is Nm (see (iv), above),
9214_1 = Levy(Ry,2!P 2i+‘|). Let V denote our ground model, and P denote
Rlim Q. We can prove by induction |P;| < k; moreover if A < k is strongly
inaccessible then i < A = |P;| < A, and Py, has power A.

By 1.1 (ii)’, P satisfies the condition (remembering (iv),+(iv)p) hence by
1.1(i), forcing by P does not collapse ®; nor add reals and so V¥ £ CH. On
the other hand clearly |P;| > 4, hence Q941 collapses |i| to R, hence all A,
R; < A < & are collapsed by P. By 1.1(iii) (or X 5.3(1)) P satisfies the k-chain
condition hence & is not collapsed. So clearly RY” = RV, RY" = k and V7
satisfies G.C.H.
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Let F' be a normal k-complete ultrafilter over £ (in V'), then by (iii) and
X.6.5 (see references there), F' generates a normal precipitous filter on & in V.
Let A be {\ < k : X is inaccessible} (in V) then A € F so we are done with
the proof once we show that A € A implies A has cofinality w in V[P]. As Nm
satisfies our condition (by demand (iv), ) and ) is inaccessible in V we know
that the iteration up to stage X satisfies the A-c.c. (by demand (iii), or by using
X5.3(1) provided that we restrict A to Mahlo cardinals). Hence after forcing
with P, we have A = N and at the next step in the iteration Nm shoots a
cofinal w-sequence into A, a sequence that exemplifies cf(A\) = Rg in VP, see
4.1A. Uhe

1.3 Theorem. If “ZFC + G.C.H. + there is a Mahlo cardinal” is consistent
then so is “ZFC + G.C.H. + for every stationary S C S2 there is a closed copy

of w; included in it”.

Remark. Earlier Van-Liere has shown the converse and is a variant of a problem
of Friedman, see on this X 7.0.
For the clarity of the exposition we prove here a weaker theorem and

postpone the proof of the theorem as stated above to Sect. 7 of this chapter.

1.4 Theorem. If “ZFC + G.C.H. + there is a weakly compact cardinal” is
consistent then so is “ZFC 4+ G.C.H. + for every stationary S C S2 there is a

closed copy of w; included in it”.

Proof. The proof is very much like the proof of Theorem 7.3 of X; the only
difference is that now we do not have to demand that there will be measurable
cardinals below the weakly compact cardinal. We give here only an outline
of the proof. Let x be weakly compact, w.l.o.g. V = L, so by Jensen’s work
there is (A, : @ < Kk, a inaccessible), Ay = (Age : € < ng), a diamond
sequence satisfying: Ay, C H(c), and for every finite sequence A of subsets of
H(x), and I1} sentence 3 such that (H(k), €, A) F 9 there is some inaccessible
X such that AJH(\) = Ay (ie. ny = £g(A) and Ay, = A. N H()\)) and



536 XI. Changing Cofinalities; Equi-Consistency Results

(H(X), €, Ay) E 9. Now we define an RCS iteration Q = (P;,Q; : i < k). Let
Qa = P[Sa] (as it was defined in 1.1 (iv)c) whenever Ay = (Paypa,Sa), @
strongly inaccessible and p, € P, and p, IFp, “Sq is a stationary subset of S3
(= {6 < A:cf(d) =No})”, and in all other cases we force with the usual Levy
R;-closed conditions for collapsing 2!F=I+lel,

In the model we get after the forcing x = Ry and every stationary subset of
SZ includes a closed copy of wy. (For checking the details note that our forcing
notion, and any initial segment of it, satisfies our condition thus no reals are
added, XN; is not collapsed and in any A-stage for inaccessible ), the initial
segment of the forcing satisfies the A-c.c. so at that stage A\ = wy, when we use

P[S)] we are forcing with P[S] for S which is a stationary subset of S2). O 3

1.4A Remark. If « is only a Mahlo cardinal then this proof suffices if we just

” or even if

want “for every S C S2, S or S2 \ S contains a closed copy of wq
we want “if h is a pressing-down function on Sz, then for some a, h=!({a})

contains a closed copy of w;”. See more in 7.2.

1.5 Theorem. If “ZFC + G.C.H. + there is an inaccessible cardinal” is
consistent then so is “ZFC + G.C.H. + there is no subset of N; such that

all w-sequences of Ny are constructible from it”.

Remark.
(1) This theorem answers a question of Uri Abraham who has also proved its
converse.

(2) Again we can omit G.C.H. from the hypothesis.

Proof. Let k be inaccessible and let Q = (Pi,Q; : i < k) be an RCS iteration,

Q2 = (Nm)VPm, Qait1 = Levy(Rg, 2/P2:1+1i) In the resulting model £ = Ry
and as the forcing satisfies the k-c.c. any subset of X; is a member of a model
obtained by some proper initial segment of our iteration, but the w-sequence
added to wy by the next Nm forcing does not belong to this model so it is not

constructible from this subset of N;. Ois
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1.6 Theorem. If the existence of a Mahlo cardinal is consistent with ZFC
then so is “G.C.H. + for every subset A of R, there is some ordinal ¢ such that
cf(8) = Rp but § is a regular cardinal in L[{A N §]”.

Remark. Again this is an answer to a question of Uri Abraham and again he
has shown that the converse of the theorem is true as well by using the square

on A.

Proof. Let k be Mahlo (in a model V of ZFC + G.C.H.), w.lo.g. V = L and
iterate as in the proof of 1.5. Let A be a subset of N; in the resulting model.
As the forcing notion satisfies the s-c.c., we can find a closed and unbounded
C C X, such that for § € C we have AN § € V[Ps] where Ps is the Rlim of
4’th initial segment of our iteration. As k is Mahlo, {A < k : A is inaccessible}
is stationary in it so there is some inaccessible A in C. Such X exemplifies our
claim. P satisfies the A-c.c., so in V[Py] we have A = R, hence Nm at the
A-step of the iteration adds a cofinal w sequence into A, so in V[P,], which is

our model, cf(A) = Ng. But L[A] C V[P as A€ C (and Ps < P = P,). U

One more answer to a question from Uri Abraham’s dissertation is to get V
such that if A C w, and Né’w = Ry then L[A] has > R, reals. We had noted that
for the statement to hold in V/, it is enough to have: L[{§ < RY : cf¥é = R¢}]
has at least RY reals; more explicitly, it is enough to produce a model in which
there are R, distinct reals 7, such that for some A € Car” we have r(£) = 0 iff
cf((ATE)L) = Ry (i.e., the cofinality is in V, A*¢ is computed in L). Then the
answer below was obtained by Shai Ben-David using the same method as of
1.5, 1.6:

1.7 Theorem. [Ben David] The consistency of “ZFC + there exists an inacces-
sible cardinal” is equivalent with the consistency with ZFC of the statement:
“There is no cardinal preserving extension of the universe in which there is a

set A C Ny such that L[A] satisfies C.H. and NQ[A] = Rp”.
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However, this proof relies on a preliminary version of this chapter in
which forcing notions adding reals were permitted, which unfortunately seems
doubtful and was abandoned. The framework given in 1.1, is not enough since
in (iv) no forcing notions adding reals appear, but we can use XV §3 instead

(i-e. for unboundedly many 4, Q; is Cohen forcing)

Remark. In fact there is no class of V which is a model of ZFC, having the

same N; and X, and satisfying C.H.

1.8 Remark. The partition theorems presented later can be slightly general-
ized to monotone families (instead of ideals) as done in the first version of this

book. But this is irrelevant to our main purpose.

We now recall the main properties of RCS iterations. Whenever it is
convenient, we will assume that all partial orders under consideration are

complete Boolean algebras i.e. are (B \ {0}, >).

1.9 Definition. We say that a sequence (Pa,Qg,iﬁ < 4,8 <6) is an RCS
iteration of length ¢ (4 not necessarily limit ordinal), if:

(1) For all 3, ig is a dense embedding from Pg * Qp into Pg4y, or into
the complete Boolean algebra generated by Psy1. [We usually do not
mention ig and identify P * Qs with Pg1].

(2) For all & < B < 4, P, < Pg. [We assume that for all p € Pg, the
projection of p to P, exists, and we write it as pla. We write P, g
for the quotient forcing Pg/P, or P3/G4 in VP or V[G,], and let
p +— plla, B) be the obvious map in V=

(3) Whenever a < ¢ is a limit ordinal, then P, = Rlim(Pg : § < a).

Also, if we write Q = (Pa,Qa : a < §), we automatically define P;s def

Rlim @ (if 4 is a limit) or Ps def Ps_1 % 95_1 (if ¢ is a successor), respectively.

We say that (P, : a < §) is an RCS iteration iff (Pa,Qa ta < 6) is one,

with Qo % Poy1/Pa.



§1. The Theorems 539

We will not define here what Rlim Q actually is. A possible definition is in
chapter X. Here we will only collect some properties of RCS iterations which

we will use. First, we need a definition:

1.10 Definition. If a is a Ps-name we say that o is prompt, if IF “a < §”, and

for all ordinals £ < 4, all conditions q € Py:
whenever ¢ lF “a =¢”, then already ¢[(£ +1)IF “a =¢".

(where q[(6 + 1) = q)

Note that

1.10A Observation. 1) For a Ps-name o we have:

o is prompt iff I “a < §”, and for all £ < 4 and all p € Ps:
ifplk “a <€, thenp[(§+1) IF “a < &".
Also the inverse implication holds, of course.

2) If S is a set of prompt Ps-names, then also Sup(S) is a prompt Ps-name and

min(.S) is a prompt Ps-name.

Proof. Easy.

1.11 Definition. If ¢ is a prompt Ps-name, then

(a) Pa = {pePs: (Vg2 p)fif gIF “a=¢", thengl(6 +1) IFp, “p € G5"]}

(b) for an atomic Q-condition p, pla is naturally defined: for G5 C P5 generic
over V, (pla)(Gs] is p(Gs] if (5[Gs] < o[Gs] and @ otherwise

(c) for p € Ps, let pla = {rla:r € p}
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It may be more illustrative to consider the following dense subset:

df [13 )
Py | J{pe Peipltp, “a=¢"}
139

1.11A Remark.

(a) For any prompt Ps-name o we have P, <¢ Ps. Moreover, if IFp, “a; <
a2”, then P, < Py,.

(b) If & is the canonical name of «, then P, = P.

1.12 Properties of RCS iterations. Let Q = (PayQa : @ < ) be an RCS
iteration with RCS limit Ps. Then

(0)

(1)

Assume a(*) < 4, ¢ is a prompt Py(4)4+1-name of an ordinal > a(x), Z is
an antichain of Py(,)4+1 such that p € Z = pIFp;, “a = a()” and for each
p € Z, By is a prompt Ps-name of an ordinal > a(*). Then for some prompt
Ps-name y we have lkp, “if p€ TN Gp, then y = fp and if TN Gp, = 1]
then y = a”.

Whenever (a, : n < w) is a sequence of prompt Ps-names, satisfying
IFp; “an < apt1” for all n, and IFp, “o, = sup,an”, then P, is the
inverse limit of (P,, : n < w). So in particular: whenever (p, : n < w) is a
sequence of conditions in Pj, and p, € P,,, and ppi1lan = p, for all n,
then there is p € Py, such that for all n, plon = pn. Moreover if py € P,
and Pn+1 is a P,,.-name of a member of P, ,, such that Pn+1 lan = Pn
then there is p as above.

Let a(*) < & be non-limit, G (x) C Py(+) generic over V, and (a¢ : ¢ < B)
an increasing continuous sequence of ordinals in V{Gqy)], a0 = a(*),
ag = 0, each a¢y1 a successor ordinal.

In V[Ga(s), we define P, = Po /Gax)s Q¢ = Pacyi/Gac (Where Go,
is the P, -name of the generic subset of PC,’ which essentially means a
generic subset of P, over V extending Gu(.) (Q; is still a P/-name)
Q = <PCI’Q/C : ¢ < fB). Then in V[Gqw), Q' is an RCS iteration with
limit Pg.
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(3) If § is limit, then for all p € P,
IFp, “pe Gsiff Vo < 6 [pla € Gs]”

(4) If & is a limit, then for all p € P; we have a countable set {¢*(p) : k < w}
of prompt names with IF “gk(p) < ¢” for all k such that letting ¢* =
sup{gk(p) : k <w}, we have ¢* is an almost prompt Ps-name and p € Pe..

(5) If 6 is a strongly inaccessible cardinal and for every a < § we have |P,| < §
then Py is the direct limit of Q that is Ua P, is a dense sunset of Pj.

a<
1.13 More properties of RCS iterations. As corollaries of (4) and (5)

above we get:

(1) Let @ be an RCS iteration as above, and assume
IFps “cf(6) > Ro”

Then
(a) Uqcs Pa is (essentially) a dense subset of Ps that is for every p € Ps

for some ¢ € |J P, we have ¢ I “p € Gp,” (so Ps is the direct limit
a<d

of (Py: x < 9))

(b) No new w-sequences of ordinals are added in stage d, i.e., whenever
p € Ps, T a Ps-name and p lFp, “7 : w — Ord”, then thereis an a < 6,
a P,-name 7* and a condition ¢ > p such that ¢ IF “7 = 7*".

(2) If (Pa,Qa : a < k) is an RCS iteration, & a strongly inaccessible cardinal,
P, does not collapse N1, and for all & < k we have |P,| < k, then P,

satisfies the s-chain condition.

Proof. (1a) Let p € Ps, ¢* as in 1.12(4), and let ¢ > p decide the value of ¢*,
say qlkp, “¢* =¢”. Then ql(€ + 1) € Pg4q is essentially stronger than p.
(1b) Not hard.

(2) Easy, since we take direct limits on the stationary set S§f = {6 < X :
cf(86) = N1}, by (1)(a). Oi.13
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§2. The Condition

In this section we get to the heart of this chapter, the definition of our condition

for forcing notions. We need some preliminary definitions.

2.1 Definition. A tagged tree (or an ideal tagged tree) is a pair (7},1) such

that:

(A) T is a tree i.e., a nonempty set of finite sequences of ordinals such that if
n € T then any initial segment of 7 belongs to T'; here with no maximal
nodes if not said otherwise. T is partially ordered by initial segments, i.e.,
1 < v iff n is an initial segment of v.

(B) 1is a function with domain including T such that for every n € T : I(n)
(déf l,) is an ideal of subsets of some set called the domain of I,, and

Sucer(n) ef {v : v is an immediate successor of n in T'} C Dom(l,).

(C) For every n € T we have Sucr(n) # @ and above each 1 € T there is some

v € T such that Sucr(v) ¢ 1,.

2.1A Convention. For any tagged tree (T,1) we can define If,
I} = {{a:n"(a) € A} : A €1,}; we sometimes, in an abuse of notation, do
not distinguish between | and If; e.g. if III is constantly I*, we write I* instead

of I. Sometimes we also write Sucr(n) for {a: 9" (a) € T}.

2.2 Definition. n will be called a splitting point of (T 1) if Sucr(n) ¢ I, (just
like v in (3) above). Let sp(T, 1) be the set of splitting points of (T, I).

We call (T, 1) normal if n € T \ sp(T,1) = |Sucr(n)| = 1 (we may forget
to demand this).

2.3 Definition. We now define orders between tagged trees:

(a) (Ty,l2) < (Th,h) if Ty C T, and whenever n € T is a splitting point
of Ty then Sucr, () ¢ l2(n) and 11(n)[Suct, (n) = l2(n)[Sucr, (n) (where
ITA={B:BC Aand B € I}) and Dom(I[A) = A.
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(b) (Tz,'z) S* (T1,|1) iff (T2,|2) < (T1,|1) and every n € Ty which is a
splitting point of T3 is a splitting point of 7} as well.

2.3A Notation. We omit I; and denote a tagged tree by T7 whenever |, =
{A C Sucr(n) : |A| < |Sucr(n)] if [Sucr(n)| > Ro, and A = @ if |Sucr(n)| < Ro}
for every n € T.

2.4 Definition.

(1) For aset I of ideals, a tagged tree (T, 1) is an I-tree if for every n € T',1,, € I
(up to an isomorphism) or |Sucr(n)| = 1.

(2) For a set S of regular cardinals, T is called an S-tree if for some 1, (T)1)

is an Is-tagged tree where [s = {{A C A: |A| < A}: A e S}

2.5 Definition.

(1) For a tree T, imT is the set of all w-sequences of ordinals, such that every
finite initial segment of them is a member of T'. The set lim T is also called
the set of “branches” of T'.

(2) A subset J of a tree T is a front if n,v € J implies none of them is an
initial segment of the other, and every n € lim7T has an initial segment

which is a member of J.

2.6 Main Definition. Let S be a set of regular cardinals; we say that a forcing
notion P satisfies the S-condition if there is a function F' with values of the
“right” forms, so that for every S-tree T
if f is a function f : T — P satisfying
(a) v < n implies f(v) <p f(n) and
(b) there are fronts J,(n < w) (of T) such that |J,, ., Jn = sp(T,1),
every member of J,,,; has a proper initial segment belonging to J,

and 1 € J, implies

(Sucr(n), (f(v) : v € Sucr(n))) = F(n,win, (f(v) : v I n))
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(w[n] is defined below) and Sucr(n) = {n"(a) : @ < A} for some
A € S (for simplicity).

then for every T, T <* T" there is some p € P such that p IFp “In € LimT"
such that Vk < w we have f(nlk) € Gp” where Gp is the P-name of the generic
subset of P; note that in general ) is not from V/, i.e. it may be a branch which

forcing by P adds.

2.6A Explanation. First for the notation: win] = {k < fg(n) : nlk €
Ue<w Je}-

Now for the meaning: One can regard the situation as a kind of a game. There
are two players. In w many steps they define a tree T and an increasing function
f:T — P. In the n’th move, player I defines an initial segment T}, of the tree
T (so T, will be the set of nodes up to some member of the front J,) and a
function f, : T, — P which is increasing such that m < n = f;. C f, (see
below). Player II end-extends the tree T,, to a tree T, by adding successors
to each leaf (=node without successor) in T;, and extends f, to a function
fl on T). Then player I plays T,,+1 (an end extension of T, with no infinite
branches), and a function fn,41 (2 f1), etc. Finally, T = U, T, f = U, fa-
Player II wins a play if for all Tt: if T <* T, then there is p € P such that
plkp “(3n € imT1)(Vk < w)f(nlk) € Gp”. P satisfies the S-condition if there
is a winning strategy F' which at each point 1 depends only on what happened
so far on the nodes below 7.

However F, the “winning strategy” of player II, has only partial memory.

Remark. It does not matter if we require |J,, Jn = sp(T, I) or U,, Jn € sp(T, 1),
or equivalently whether we allow player I to play any end extension T), of T}, _;

or only end extensions with no new splitting points.
Remark. (1) If P is a dense subset of Q, then P has the I-condition (see 2.7

below) iff @ has it.
(2) If P < @, and Q has the I-condition, then also P has the I-condition.
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The proof of (2) uses the fact that if: f: T — P, then the existence of a
branch in {n € T': f(n) € G,} is absolute between the universes V¥ and V<.

2.6B Convention.

(1) In Definition 2.6, the value F' gives to Sucz(n) is w.lo.g. {n"(a) : @ < A}
for some A, and we do not strictly distinguish between A and Sucr(n).

(2) The domain of F consists of triples of the form (n, w, f), where 7 is a finite
sequence of ordinals, w C Dom(7n), and f is an increasing function from
{nlk : k <{g(n)} into P. The value F(n,w, f) has two components: The
first is of the form {n" (i) : i € A} for some set A of ordinals (by (1),
without loss of generality A = |A|) and the second component is a family
of elements of P above f(n), indexed by the first component.
When we define such a function F', we usually call the first component

“Sucr(n)” (here “T™” is just a label, not an actual variable), and we write the

second component as f[Sucr(n) or (f(v) : v € Sucr(n)) (i.e. we use the same

variable “f” that appears in the input of F').

2.7 Definition. For a set [ of ideals we define similarly when does a forcing
notion P satisfies the I-condition (the only difference is dealing with I-trees

instead of S-trees), so now
(Sucr(n), Iy, (f(v) : v € Sucr(n)) = F(n,w(n], fi{v : v < n})

and Sucr(n) = Dom(l,). We allow ourselves to omit Sucr(n) when it is well

understood. (We can let the function depend on I, (v < n) too).

2.7A Remark. If I is restriction closed (i.e. I € I, A C Dom(I), A ¢ I then
ITA €1 at least for some B C A, B¢ It and J € I we have I|B = J) then we

can weaken the demand to

Sucr(n) € Dom(l,), Sucr(n) ¢ I).
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§3. The Preservation Properties
Guaranteed by the S-Condition

3.1 Definition.

(1) An ideal I is A-complete if any union of less than A\ members of I is still a
member of I.

(2) A tagged tree (T,l) is A-complete if for each n € T the ideal I, is A-
complete.

(3) A family I of ideals is A-complete if each I € I is A-complete.

3.2 Theorem. (CH) If P is a forcing notion satisfying the I-condition for an

No-complete I then forcing with P does not add reals.

As an immediate conclusion we get:
3.3 Theorem. (CH) If P is a forcing notion satisfying the S-condition for a
set S of regular cardinals greater than R; then forcing with P does not add

reals.

The main tool for the proof of the theorem is the combinatorial Lemma 3.5
from [RuSh:117], for which we need a preliminary definition. More on such
theorems and history see Rubin and Shelah [RuSh:117].

3.4 Definition. We define a topology on imT (for any tree T) by defining
for each 1 € T the set Tj; = {v : n<v or v<n} and letting {limT}, : n € T}
generate the family of open subsets of limT (so each such set lim(Tj,) is also
closed and is called basic open, and an open subset is an arbitrary union of
basic open sets). The family of Borel sets is the o-algebra generated by the

open sets.

3.5 Lemma. 1) If (T,1) is a At-complete tree and H is a function from limT
to A such that for every a < A the set H~!({a}) is a Borel subset of limT (in
the topology that was defined in Definition 3.4) then there is a tagged subtree
(T, 1), (T,1) <* (T, 1) (see 2.3(b)) such that H is constant on limT'.
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2) In part (1) we can let H be multivalued, i.e. assume lim(T) is |J H,, each
a<

H, is a Borel subset of lim(T"). If (T, 1) is A\*-complete then there is (T't, 1) such
that (T,1) <* (T'1,Z) and for some a we have lim(T") C H,.

Proof. 1) First note that if Ty C T is such that: () € Ty; foreveryn e T} ifnisa
splitting point of (T, 1) then Sucr, (7) = Sucr(n) and if 7 is not a splitting point
of T then |Sucr, (n)| = 1, then (T,1) <* (T1,1[T1), so w.l.o.g. we can assume
that in T every point is either a splitting point or it has only one immediate
extension.

For each a < ) let us define a game O, : in the first move player I chooses
the node 7 in the tree such that £g(ne) = 0, player II responds by choosing
a proper subset Ao of Sucr(no) such that Ag € |, in the n-th move player I
chooses an immediate extension of 1,1, 1, such that 1, ¢ A,—1 or 1,_1 is not
a splitting point of (T, 1), and player II responds by choosing A, € Iy, .

Player I wins if for the infinite branch 7 defined by 79, 71,72, ... we have
H(n) = o. By the assumption of the lemma this is a Borel game so by Martin’s
Theorem, [Mr75] one of the players has a winning strategy. We claim that
there is some a < A for which player I has a winning strategy in the game O,
Assume otherwise, i.e., for every o < A player II has a winning strategy F,.
We construct an infinite branch inductively: let ng = (), no € T. At stage n
let An, be Uycy Fa(m0,M1,---,Mn-1); now if n,_; is a splitting point (of (T, 1))
then |, , is A*-complete and each Fy(no,...,7,-1) is a member of it, hence
Ap €y, ., soclearly Sucr(n,-1) € An.

If -1 is not a splitting point it has only one immediate successor and let
it by 7, otherwise since Suc(nn-1) ¢ I, _,, An € I, _,, we have (Suc(n,-1) \
Ap) # 0 so we choose 7, € (Sucr(1n-1) \ An). Let n = U, ., 7n be the infinite
branch that we define by our construction and let a(x) = H(n). Now in the
game Oy if player I will choose 7, at stage n (for all n) and player II will
play by Fy(4), player I will win although player II has used his winning strategy
F,(x), contradiction.

So there must be a(x) such that player I has a winning strategy Hq() for
Oa(x) and let Tt be the subtree of T defined by {n : (n]0,...,n[(n—1)) are the
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first n moves of player I in a play in which he plays according to Hy(,)}. Now
for n € T Nsp(T), let A = Sucyt(n). Then A ¢ I,,, otherwise player II could
have played it as A,. So T <* T', and T" is as required.

2) Same proof replacing H=1({a}) by H, so H(n) = a by n € H,. Os.5

3.5A Corollary. If (T, 1) is a A\*-complete tree, and g is a function from 7T into
A, and AR0 = ), then there is a tagged subtree (T, I), (T,I) <* (T',I) such
that g|T! depends only on the length of its argument, i.e. for some function

SJJr tw— A forallne TT» a(n) = g*(ég(n)). Os.54

Proof of Theorem 3.2. Let 7 be a name of a real in V[P] and py € P and
we will find a condition p € P forcing 7 to be equal to a real from V and
po < p. Let f, (T,1) be such that Rang(l) C I, f : T — P and be defined as
follows: we define by induction on k, for a sequence 7 of ordinals of length k,
the truth value of n € T, f(n), and then I,,. Welet () € T, f({)) = po. Forne T
of even length 2k, we use F' from the definition of the I-condition, to define
Sucr(n), by, fISucr(n). For n € T of length 2k + 1, we let Suc,(T) = {n"(0)},
and we define f(n"(0)) such that it will be an extension of the value of f on
its predecessor and such that f(n) forces a value for 7(k) (the k’th place of the
real that 7 names).

We continue by defining H : imT — RY (as we assume C.H. clearly
IRY| = Ry, so it is just like a function from T to w;) by letting H(n)(k) =
the value forced by f(n[(2k + 1)) for 7(k). By Lemma 3.5 there is (T, 1),
(T,1) <* (T1,1) on which H is constant, now let p be the forcing condition
that by Definition 2.6 forces “In € imT" such that Vk[f(nlk) € Gp]”. This p
forces T to equal the constant value of H on T which is a member of V, and

plF “py € Gp”. Us.2

3.6 Theorem. If P is a forcing notion satisfying the S-condition for a set of

regular cardinals S and R; ¢ S then forcing by P does not collapse R;.
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Remark. 1) Note that this is stronger than 3.3, as we do not assume C.H. and
that we allow Rg € S. The proof is quite similar to the proof of Theorem 3.2
but here we use a somewhat different combinatorial lemma. Note also that we
shall not use this theorem;

2) We can generalize 3.2 and 3.6 to I-condition when I is Xo-complete, striaght-

forwardly, see 3.8.

3.7 Lemma. Let (T, 1) be such that for some regular uncountable A, for every
n € T either I, is At-complete or [Sucr(n)| < A, then for every H : T — A
satisfying {n € imT : H(n) < a} is a Borel subset of lim T for any successor
a < ), there is @ < A and (TV,1), (T,1) <* (T”,1) such that for all n € T' we
have H(n) < a, and for all  in T”, if |Sucr(n)| < A, then Sucy (n) = Sucr(n).

Proof of the lemma. We define for each successor a < A a game 0, very much
like the way we did it for proving Lemma 3.5, the only difference being that if
|Sucr(n,)| < A player II chooses A, such that |Sucr(n,) \ An| =1 (otherwise
player II chooses A, € |, just like in 3.3); player I wins if for every n < w
H(n,) < a. Here again the game O, is determined for every o (here simply
because if player II wins a play he does so at some finite stage). Again we claim
that there should be at least one o for which player I has a winning strategy.
Assume the contrary and let Fy, be player’s II winning strategy for each a < \.
We construct a subtree T* deciding by induction on the height of the members
of T" which of them are the members of T*. For 7 that is already in T*, if
|Sucr(n)| < A we include all the members of Sucy(n) in T*; otherwise 1,, is
At-complete so Sucr(n) \ Uycyr Fa(n10,711,...,7) is not empty, so we pick
one extension of 77 from this set and the rest of Sucy(n) will not be in T*. Now
T™ is a tree of height w branching to less than A successors at each point, so as
A is regular uncountable |T*| < A and there is some a* < A such that n € T*
implies H(n) < o*. Regarding the game O,-, there is a play of it in which
player I chooses all along the way members of T* and player II plays according
to Fy-~, of course player I wins this game contradicting the assumption that

F,« is a winning strategy for player II.
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We define T” just like we did in the proof of Lemma 3.5, collecting all the
initial segments of plays of player I in the game O,- when he plays according

to his winning strategy H«. Os.7

Proof of Theorem 3.6. Just like in the proof of 3.2, having a name 7 of a function
in V[P] mapping w into w; we take an S-tree T', define a function h : T — P
using the F in odd stages and in even stages forcing more and more values for
7. Using 3.7 with A = R;, we get a condition p € P forcing the function that 7

names to be bounded below w;, so we are done. Os ¢
Similarly we can prove:

3.8 Theorem. If P satisfies the I-condition, and A is regular uncountable and
(VI e€I) [|UI|l < AorIis At-complete] then I-p “cf(A) > Ro”. If (VI €I) [ is

A*-complete] and A = A¥° then P adds no new w-sequence from .

3.8 Warning. The statement “in VP ,Q satisfies the S-condition” may be

interpreted as “in VP, Q satisfies the I-condition” in two ways:
() I={{AeVP:ACANVFPE|Al <A}: X€e S}
(b) I={{A€V:ACANVE|A <A}:Xe S}

Note that I € I is identified with the ideal it generates.
However the two interpretations are equivalent if P satisfies the A-chain
condition (or is A*-complete) for each A € S (and even weaker conditions) [and

this will be the case in all our applications.]

8§4. Forcing Notions Satisfying the S-Condition

4.1 Definition. Namba forcing Nm is the set {T : T is a tagged {Rq}-tree,
such that for every n € T, for some v, n Qv € T and [Sucr(v)| = Rp} with the
order T < T iff T D T' (see 2.4); so smaller trees carry more information and
we identify T and (T, I*?), I®? is the ideal of bounded subsets of wy. We will

1 w2/ Twe
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Vo
2

write h or hy,, for the generic branch added by Nm, i.e. F“h: w — wg ”, and

for every p in the generic filter, tr(p) ef trunk(p) C h”, where the trunk of T
is n € T of maximal length such that v € T & ¢g(v) < £g(n) = v < n. We can
restrict ourselves to normal members: T such that n € T = [Sucr(n)| € {1, Rz}.
For I an ideal of wy, Nm([) is defined similarly (not used in this chapter).

4.1A Claim. Nm changes the cofinality of Ry to Ro (hn,, exemplifies this).

Remark. In X 4.4 (4) the variant of Namba forcing Nm' is the set of all trees of
height w such that each tree has a node, the trunk such that below its level the
tree-order is linear and above it each point has X2 many immediate successors,
the order is inversed inclusion. Namba introduces Nm in [Nm]. Both forcing
notions add a cofinal w-sequence to we (Nm by 4.1A, Nm' by X 4.7(2)) without
collapsing N, and (if CH holds) neither of them adds reals (Nm by 4.4, Nm'
by 4.7(1), (3)), but they are not the same.

4.2 Claim. (Magidor and Shelah). Assume CH. If h[h] is a Namba sequence
[Namba'-sequence] then in V'[h] we cannot find a Namba’-sequence over V, nor

can we in V[h'] find a Namba-sequence over V.

Proof. Trivially we can in Nm and Nm' restrict ourselves to conditions which
are trees consisting of strictly increasing finite sequences of ordinals. First we
look in V[A'], let A’ be the Nm'-name of the Namba’ sequence, and let f bea
Nm'-name of an increasing function from w to wy. Let 7 € Nm’ and suppose
T° Iy, “Sup Rang(f) = wy”. Now it is easy to find T in Nm’, T* > T°, such
that for each m,n < w the truth values of “f(n) = h'(m)”, and “f(n) < b'(m)”
are determined by T (i.e., forced), (possible by X 4.7(1), as forcing by Nm’
does not add reals.)

Let A = {k < w : for some m, T! forces that for every i < k we
have f(i) < h'(m) < f(k)}, so A4 is an infinite subset of w, in V, and let
A= {ke¢: € <w} ko < k1 < kg < ... and there are (m; : £ < w) such that
me < mey1 <w and T IF “f(3) < b'(mg) < f(ke) for i < kg and £ < w”. Now
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(*) T ke “ for every F € V, an increasing function from wy to wo, there
is £o < w such that for every £ > £y + 3, f(ke) > F(f(ke-2))".

Why? This is because for every F' € V (as above, without loss of generality
strictly increasing) and 72 > T (in Nm') if £ is the length of the trunk of 72
then for some T3 > T?;

(#x) T ey “ if £ > £o + 3 then f(ke) > F(f(ke-2))”

Why? Simply choose T3 = {n € T? : if £g(n) > £+ 1 > £y then n(¢) >
F(n(£ - 1))}, clearly T3 € Nm/, T2 > T? and T? satisfies (**).

So (*) holds, but it exemplifies f is not a Nm-sequence, i.e., T Fng © f
is not a Namba-sequence”. [Why? Because IFnm ¢ for some function F € V
from wy to wy for arbitrarily large £ < w we have h(ke) < F(h(ke—2))”
as if T € Nm and for simplicity each n € T is strictly increasing we let
F : wy — wy be such that F(a) = min{é : if n € T N“>§ then for some
v,n<Av eTnNw4s}, and let T = {n € T: if £ < £g(n) and n|¢ € sp(T) and
{m < £:nim € sp(T)}| € U{[k10i, k10i+5) : @ < w} then n(¢) < F(n(¢ —1))},
and T” forces the failure.]| So we have proved one half of 4.2.

Now let us prove the second assertion in the claim, i.e., let f be a Nm-name
of an increasing function from w to wy, and we shall prove that it is forced, not
to be generic for Nm' so assume Ibnm “ |J f(n) = wy”. Clearly this is enough.

Let T € Nm, then we can find T°m2<wT, T° € Nm (normal) such that for
every splitting point 1 of Ty and v =" (a) € T:

1) for some n,, T{?,] IFnm “ny = Min{£ : f(£) > Max Rang(v)},
2) for some 7, Tg) I- “f(n,) = "
3) if py is the trunk of Ty then (VB)[p, " (B) € T® — B > .

If n, is not defined let n, = w (this occurs if v ¢ sp(T’).

Now by 3.5A there is T, T° <* T! (in Nm) and n,(¢ < w) such that
Ny = Ny for every n € TP Let {4; : i < w} be a list of {£ < w : ney1 # w},
such that £; < £;11, so n € T, £g(n) = £; implies 7 is a splitting point of T"L.
Note that if n € T, £;+; € Dom(n), then Tﬁ]] I “n(e;) < f(ng,) < n(lip1)”.
Let T2 = {n € T' : if £5; < £g(n), then n(f2;) = Min{a : (n[fz;) " (@) € T},
F(a) = Min{y : (Vk < w) (Vv € T?N“>a)(3p € *y)(v"p € T?)}. So F is
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nondecreasing and T[f’] - “f(ne,) < n(l2iv1) < F(n(l2i-1)) < F(f(ne,_y))”
for i € (0,w).
Let A% {ne, 10 <i<w}

Then T2 € Nm,T? > T!, and F € V is a function from wy to wp, A € V
an infinite subset of w and

T? Ik y.m “for every n € 4, f(n) < F(f(n—1))".

This shows that (T2 forces) [ is not a Nm'-sequence. Oy.2

4.3 Claim.
(1) Nm’, Nm do not satisfy the 2%°-chain condition.

(2) It is consistent with ZFC that 2% = Ry, 2% arbitrarily large and Nm, Nm’

satisfies the N4-c.c.

4.3A Remark. The proof of (2) is inspired by the proof of Baumgartner of the
consistency of: ZFC + 2R0 arbitrarily large + “there is no set of X3 subsets of R;
with pairwise countable intersection”. Thinking a minute the close connection
between the problems should be apparent. The other ingredient is the A-system
theorem on trees from Rubin and Shelah (again see [RuSh:117]).

Note that Nm, Nm' necessarily colapse R3 (see [Sh:g, VII 4.9]) so 4.3(2) is best

possible.

Proof. (1) For every real n (i.e. n € “2), let T,, = {v : v a finite sequence of
ordinals < ws, and n < £g(v) = v(n) 4+ n(n) is an even ordinal}.

Clearly T,, € Nm and T,, € Nm', and the T,’s are pairwise incompatible
(in Nm and in Nm') and there are 2% such T;,’s.

(2) Let V satisfy G.C.H. K > Ry and P = {f : f a countable function
from « to {0,1}} ordered by inclusion. Suppose in V* ;@ is Nm or Nm’, and
it does not satisfy the N4-chain condition. So there is py € P and P-names
T.(i < Ny) such that py IFp “each T'; belongs to Q (for i < R4) and they are

pairwise incompatible in @, @ is Nm or Nm'”. Without loss of generality po I

if @ = Nm’, then every T; has trunk ().
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For each i we can now find a tree of conditions pﬁ, deciding higher and
higher splitting points of T';. Specifically, we will define A* C “>(w3), pi, v}, for
1 € A* such that
(a) () € A, p}y > po
(b) p IFp “n € Ty (and p}, € P of course).

(c) P}, IFp “v; is a splitting point of T;,n<w;, and: if p <1 v} is a splitting

point of T; then for some ¢ < £g(n) we have p = v;,".

(d) n € A%, p € A',n < p implies v} <1 v}
(e) vy (a) € A* iff for some g € P,pi < qand qlFp v} (a) € T,

(f) if p = v; " (@) € A* then p}, < p}, and p}, IFp “p € T [this actually follows
from (b) and (d) and n < v}].
() if Q is Nm' then for every i and n € A%, vj = 1.

This is easily done, and let T? = {n[£: £ < £g(n),n € A%}, and let p(n € T)
be pi,v € A;, where n < v, and (Vp)[n < p < v — p ¢ A']. By the A-
system theorem on trees from [RuSh:117, Th.4.12, p.76] there is T}} satisfying
T? <* T}, and ¢} (n € T}) such that:

(a) P < ¢} hence po < ¢}, (and ¢}, € P).

(B) if n is a splitting point of T}, then n"(a), n"(B) € T} & o # B implies
Dom(g, - (o)) N Dom(g; - 5)) = Dom(gy) and g, < ¢ - () G < - ()

() if n is not a splitting point of T}, (n € T}) then for the unique a such that
n"(a) € T}, we have g} -, = ¢j.
Now by the usual A-system theorem there are i < j < N4 such that

T! =T} and for every n € T}, gj, g} are compatible. Let

*

S ]
¢ =qyUqy€eP

T={neT!:q,eGp&dq,cCGp}
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Clearly T is a P-name of a subset of “”(ws), closed under initial segments,

T CT;,Ty, so it suffices to prove

q*”~ ‘T’LS*T&I] S*I&TGQ”
which is easy. O3

4.4 Lemma. Nm satisfies the S-condition for any S such that R, € S.

Proof. To show our claim holds we have to describe F' and then show that F
does its work. At a point 77 where we use F, F' has to determine Sucr(n), and
f(n') for any immediate successor 7’ of 7 (see 2.6B for the notation). At such
a point f(n) is already known and is a condition in Nm. Let v, be a point
of minimal height in f(n) such that v, has R; many immediate successors (in
f(n))- Let Sucr(n) be {n"(a) : v, " () € f(n)} and for each " (a) in Sucr(n)
let f(n"(a)) be the subtree of f(n) consisting of members of f(n) which are
comparable with v, " (c) (in the tree order of f(n)). When we want to check
that our F' does the work; we are given an S-tree T', fronts J,, and a function
f: T — Nm as above in 2.6 and we are given a subtree TV, T' <* T". We have
to find a condition r € Nm so that r I “there exists an infinite 7 such that for
every n < w,nfn € T' and f(n[n) € G”. We produce r by passing from T’ to
a subtree T" > T” such that every point in T either belongs to some front J,
(and thus fits the demands of F' and in particular has Ry many successors) and
is a splitting point, or it has exactly one immediate successor. Now r is the tree
of all the initial segments of trunks of f(7) for some n € T" N (U, ., J»); that
is:

r={p:3Ine( U Jn) NT" such that p<iv,}

n<w
where v, is from the definition of f(n) according to F. By the construction, if
M1, 72 are <-incomparable, then so are vy, , v,,, hence by the definition of Nm,
r is a member of Nm. As any p € Nm forces that “Jr € lim(p) such that for all
n the subtree defined by n[n belongs to G”, it is not hard to see that r is as

required. Uaq
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4.4A Claim. If I* is an Ry-complete ideal on wy to which every singleton
belongs and I* € I then Nm satisfies the I-condition.

Proof. Same, and really follows (see more generally in XV §4). Og.aa

4.5 Lemma. Any w;-closed forcing notion satisfies any S-condition.

Proof. This is trivial with no “real” demands on F, when we are in the relevant
situation with an S-tree 7', T' <* T" and f : T — P we just pick r € P such
that r > |, ., f(nIn) for some 7 € limT”, such r exists by the completeness of
P and it forces that any smaller condition is a member of G p, so we are done.

Oas

4.5A Remark. The same is true for strategically N;-closed forcing notions

(games of length w + 1 suffice).

4.6 Lemma. Let W be a stationary subset of S2 = {a@ < w2 : cf(a) = w} and
let P[W] = {h: h is an increasing and continuous function from « + 1 into W
for some o < wy} ordered by inclusion, then P[W] satisfies the S-condition for

any S such that Ny € S.

Proof. We define the F' and then show why it works. Each F'(n) will determine
Sucy(n) to be {n"(a) : @ < we} and f(n"(a)) a condition above f(n) such
that Max(Rang(f(n"(a)))) > a (note that by the definition of P[W] each
function h which belongs to P[W] attains its maximum: max(Rang(h)) =
h( max(Dom(h))). Let us denote Max(Rang(f(n))) by a;. For proving that F
works, assume T is an S-tree, J,, fronts, f : T'— P[W] meets our requirements
for F (see 2.6) and T <* T'. Let C; be a closed unbounded subset of ws
such that if § € C; and n € T" and n € “>§ then o, < 6. Let C be a
closed unbounded subset of wy such that for § € Ca2,n € T' N (U,cy, Jn)
satisfying n € “>§ and o < ¢ there is always some § such that a < 8 < §
and 7~ (B) € T'. Now for some n € T’ we pick § € C; N Co N W such that
ay, < § and construct an <-increasing sequence (7, : n < w) in T such that

lim,,,,,, = 6 (this is possible as cf() = w using the definitions of C; and
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Ca). Let 7 = Upc £() U {{Suppc, Dom(f(1a)), 6 )}, cleatly r € PIW] and

forces each f(n,) to belong to the generic G so we are done. Os6

4.6A Lemma. Let W = (W, : i < w) be a sequence of stationary subsets of
S2 = {a < wsy : cf(a) = w} and let the forcing notion P[W] be defined by

def

P[W] = {f :f is an increasing and continuous function from

a + 1 into Wy for some a < wy, and h satisfies

Vi < a: h(i) € Wi}

(ordered by inclusion), then P[W] satisfies the S-condition for any S such that
Ny € 8S.

Proof. We define the F' as in the previous lemma: Each F(n) will determine
Sucr(n) to be {n"(a) : @ < wz} and f(n"(a)) a condition above f(n) such
that Max(Rang(f(n"(c))) > a. Let us write o, for Max(Domf(7)) and §,, for

Max(Rang(f(n)))-
Now assume T is an S-tree, and f : T — P[W] obeys F, and let T <* T".

By Lemma 3.5 with A = R; (not A = 2%°) we can find a subtree 7", T <* T
and an o < w; such that whenever 1y < 7;... are elements of 7", then

lim,_,, oy, = a. Now as in the proof of 4.6 let § € W, be such that
(Vn e <“6nT")(Vi < 6)(3j <)oy <& n°(j) € T" and i < ayy- (jy < 4]
Again we can construct a sequence 79 <11 < ... in T" such that
lim SupRang(n,) = 6.

Let 7 = U,<., f(nn) U {(a, )}, then 7 € P[W] and r forces each f () to
belong to the generic G. Us6a

4.7 Lemma. Suppose
(a) P satisfies the Iy-condition.
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(b) For every Iy € I there is I; € I; such that UAE[1 A C UAGIOA and
(VB € Io)[B C Upes, A— B € I

Then P satisfies the I;-condition.

Proof. Trivial. Og.7

§5. Finite Composition

5.1 Theorem. Let @ satisfies the Ij-condition and let Q1 be a Qo-name of
a forcing notion such that the weakest condition of Qg forces it to satisfy the
I;-condition. Let
(a) u be the first regular cardinal strictly greater than the cardinality of the
domain of each member of I
(b) X be such that A = A<¥ > |Qy|
(c) assume kg, “I; is A*-complete”
(d) let IbelouUI,
Then P = Qg * Ql satisfies the I-condition.

Remark. Note that I € V (we will not gain much by letting I; € V0.)

Proof. Once again we have to define the function F' and then prove it does
its work. We will need a combinatorial lemma and its proof will conclude
the proof of the theorem. For f(n) € P we denote by f°(n) its Qo-part and
by f1(n) the Q1-part (it is a Qo-name of a condition in @), let F' 0 be the
function exemplifying Qo satisfies the Ip-condition and F! be the Qo-name of
the function exemplifying @, satisfies the I;-condition.

We divide the definition of the F to even and odd stages. In even stages i.e.,
when |w] is even, we will refer to the Qo part of P and use F°. More precisely, let
(B, 1y, (ry : v € B)) = F3 (n,(f°(n1£) : £ < £g(n))) where wy = {£ € w: [£Nw]
even}. Now let Sucr(n) = B and for v € B, f}(v) = f(n), f°(v) = r,. In

odd stages we essentially do the same for the @Q;-part but we need a little
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modification; F! is just a Qo-name of a function and we may not even know
the domain of the ideal |, it give (= the Sucr(n)), so first we extend f°(n)
to a condition ¢ satisfying f°(n) < ¢} € Qo and forcing a specific value for
I, (hence for Sucr(n)) as defined by F', and then proceed like in the Qo part
(of course we change each f(n) there to f!(n) and so on) and we let the Qo
part fO(n’) for each n € Sucr(n) be the ¢; we have picked (the @ part will
be defined by F(n, (f}(nl¢ : £ < £g(n)))) (if we want to allow F to have just
Sucr(n) # @ mod I, act as in the proof 6.2).

Before we can show that this definition works we need a definition and a

combinatorial lemma.

5.2 Definition. For a subset A of T' we define by induction on the length
of n, resr(n, A) for each n € T. Let resp((),A) = (). Assume resr(n, A)
is already defined and we define resp(n”(a), A) for all members 7" (a) of
Sucr(n). If n € A then resr(n”(a), A) = resr(n,A) " (a) and if n ¢ A then
rest(n " (a), A) = resr(n, A)"(0). Thus res(T, A) def {resr(n,A) : n € T} is
a tree obtained by projecting, i.e., gluing together all members of Sucr(n)

whenever n ¢ A.

5.3 Lemma. Let )\, 1 be uncountable cardinals satisfying A<# = X and let (T, 1)
be a tree in which for each n € T either |Sucr(n)| < p or I(n) is A*-complete.
Then for every function H : T — A there exist 1", (T, 1) <* (T",1) such that
(letting A = {n € T : |Sucr(n)| < p}) for n,n" € T": resr(n, A) = resp(n’, A)
implies: H(n) = H(p') and n € Aiff 7/ € A, and if n € T' N A, then
Sucr(n) = Sucy/(n). (Note that the lemma is also true for A = p = Ry).

5.4 Continuation of the proof of 5.1. Using the lemma let us prove the theorem.
So we are given (T,I),f,J, for n < w as in 2.6 for our F, and consider
f%:T — Qo as a function to ), (remember |Qq| < )).

We let A = {n : |Sucr(n)| < p}). By the lemma for every (7”,1) satisfying
(T, 1) <* (T",1) there is a subtree T, (T",1) <* (T”,1) such that for every
0,7’ € T" we have: fO(n) = f°(n'), and n € A iff n’ € A whenever resr(n, A) =
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resp(n’, A). Let T* = {resp(n,A) : n € T"}, it is an Ip-tree (since the “even”
fronts of the original tree now become splitting points) and f° induces a
function fO from it to Qo i.e., v = resp(n, A) implies fO(v) = f°(n) (by the
conclusion of 5.3, fo is well defined).

By the definition of F for even |w|’s and the assumption that F° exemplify the

Io-condition we can find an ry € Qg and a Qg-name 7 of a member of limT™*

such that rq IFg, “for every k < w we have fo(y[k) € Go” where G is the Qo-

name for the generic subset of Qo”. Let T+ def {p € T" : res(p, A) = res(n, A) };
this is a Qo-name of an I;-tree and by the definition of F' in the odd stages (i.e.
F, when |w| is odd) there are a Qp-name r; of a member of Q; and a Qq * Q-
name v of an w-branch of T* such that ro IFg, [r1 kg, “ v € imT* is such
that f L(vlk) € G for every k < w”] where G is the ;1ame of the generic set
for Ql and v is forced to be a name in 91 of a member of limT"*. The condition

in P=Qqx* Ql which witnesses that the I-condition holds is of course (ro,r1),
since (rg,r1) IF “v € im T, and for all k € w, fo(y[k) = fo(res(urk),A) € Go,
and f(v[k) € G. Os.1

We now pay our debt and prove Lemma 5.3; the proof is in the spirit of the

proofs of the previous combinatorial Lemmas 3.3 and 3.5.

5.5. Proof of Lemma 5.8 Without loss of generality n"(a) € T = a <
|Sucr(n)|. We will prove the lemma by induction on . We start with a successor
U, in such cases there is a cardinal k such that u = k* and for each n € T we
have res(n, A) € “> k. Let {(ha,ga) : @ < A} be a list of all the pairs (h, g)
such that g is a function from “>« to {0,1} and h is in a function from “>x
to A (by the assumption A<# = A, hence there are at most A many such pairs).
For each a < A we define a game O, just like in the proof of 3.7, except that
now player I wins if for the n € limT that they constructed along the play
we have: nlk € A iff g,(resy(nlk, A)) = 0 and H(nlk) = ho(resr(nlk, A)) for
every k < w.

If for every a < X player II had a winning strategy we could build a subtree
T* by induction on the height of n € T taking into T* all members of Sucr(n)
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when 1 € A, and otherwise picking as the only member of Sucr-(7) an element
of Sucr(n) that is not in any of the A,’s that are defined for player II at that
stage by his winning strategy for O, (this is possible as we assume that n ¢ A
implies I, is A*-complete).

The map n — res(n, A) is 1-1 on T™, so there is a pair (hqg, ga,) in our
list such that for each n € T* we have H(n) = hq,(resp(n, A)) and g, (n) =0
iff n € A. Now we define a play in the game O,,: player I plays choosing only
members of T* while II plays according to his winning strategy for 04, but in
such a play, player I surely wins and we get the desired contradiction.

So there exists some 3 < A for which player II has no winning strategy
in Og, but the game is determined hence player I has a winning strategy for
Og. Now let T" be the tree of all sequences 7 that can appear in a play where
player I used this strategy. T” satisfies the requirements (similar to 3.5). This

finishes the case where y is a successor.

If u is singular, then A < A<H" = A# < (A<#)ef = \ef() < A\<K = ) 50 we can
without loss of generality replace p by p't. If u is a regular limit cardinal (or
just Ro < cf(n) < p), then we first use Lemma 3.7 to find 1", (T, 1) <* (T",1),
and ¢’ < p such that for every n € T": |,, is A*-complete or |[Sucr(n)| < u/,

and then use the induction hypothesis on p’. Os.3

5.6 Corollary to 5.3. Assume that 1 = A < po < A1 < p1 < ... are
cardinals satisfying /\,fff = Ag+1 for all k. Let (T,1I) be a tagged tree, and
assume T = |J, Ay where for all n € Ag:

IU I,| < pg and I, is \; — complete.

Let fix : T — g, for k < w.
Then there is a tree T* such that (T, 1) <* (T*,1) and for all k£ and all , v

in T*:

(*) if res(n, U A;) = res(v, U A;), thenfy(n) = fr(v)

i<k i<k
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Proof. As Ao = 1 clearly Ty = T will satisfy the condition for £ = 0. We apply
Lemma 5.3 to Ty (with A = Ay, u = po, f = f1, A = Ap) to get a subtree
T satisfying the condition also for k¥ = 1. We continue by induction. In the
k-th step, we apply Lemma 5.3 to Ty with A = Agy1, = pg, f = fey1, A =
Ueckr1 4e:

Finally, let T* = N T}. Clearly T* satisfies (x). Note that () € T*, and if
n € T™* N Ag, then by the conclusion of lemma 5.3,

Sucry (1) = Suery,,(n) = ...

so Sucy~(n) = Sucr, (n). Hence T* is a tree and (Tp, I) <* (T*,1). Os.6

86. Preservation of the [-Condition by Iteration

6.1 Definition. We say that Q = (P, Qi< a) is suitable for (L; j, Ai j, pij ¢
(i,7) € W*) provided that the following hold:

(0) W* C {(4,4) : i < j < a,i is not strongly inaccessible } and {(i + 1,7) :

i+1<j <UgcqB+1} S W™ (we can use some variants, but there is no need)

(1) Q is a RCS iteration.

(2) P,; = P;/P; satisfies the I; j-condition for (i, j) € W*.

(3) for every I € I; ; the set |JI is a uncountable cardinal, I is }\Zj—complete,
Xij < UT < piyj, pij regular, and |P;| < X ;, and /\;':j > Ry (note that
I;; is from V and not VP, and i < \; j < pij).

(4) if 4(0) < (1) < i(2) < a, (1(0),4(1)) € W*,(i(1),i(2)) € W* then
A ,i@ D = Xy ica)-

(5) for every I € I;(2)43) and i(0) < i(1) <i(2) < i(3),[is A:“(O)’i(l)-complete.

6.2 Lemma. If Q = (Pn,Qn i n < w) is suitable for (L j, X j, pij : 1 < j < w),

and I =, ., Inns1 then P, = RlimQ satisfies the I-condition.

Proof. Let I; = L i+1, Ai = Aiji1, i = Miit1, note that P11 = Q4,50 Q;
satisfies the I;-condition, |P;| < Ag, pi < Aip1 = Aip1 <P < fig1-
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For each i < w, let F; be a P;-name of a function witnessing that Qi
satisfies the I;-condition. We will act as in the proof of Theorem 5.1, but now
we have countably many F;’s rather than two. We can a priori partition the
tasks, so let w = J,,, Bi, the B; pairwise disjoint, each B; infinite.

Now we shall define the function F which exemplifies “P,, satisfies the

I-condition”. So we have to define F(n,w, fI{v : v < n}), (see Definition 2.6).
Let ¢ be the unique ¢ < w such that [w| € 4;, let w* = {{ € w: [ Nw| € 4;},
and let (B, I,(ry : v € B)) = Fi(n,w*, (f(n[€)(i) : £ < £g(n))), (so IFp, “B =
Dom(7)”).
We choose ¢, € P;, such that (f(n)[i) < ¢, and for some \,, q, IFp, “|B| =
B = \,” and ¢, IFp, “I is I, which belongs to I, in fact to I; = I; ;41 (by
the natural isomorphism f,)”, (see 2.6B). Let p, = f(n)[(i + 1,w). We choose
Suer(n) = {n"(a) : @ < Uly}, and define: F(n,w,(f(v[¢) : £ < £g(n))) =
(Ags by, (T UppUgy : v € Suc(n))), [really we should replace r,, by the function
{(i,r.)}, and A, by {n" (i) : i < A\,} but we shall ignore such problems].

We now have to prove that P, I, and F satisfy Definition 2.6. So let (T} 1),
Jix(k < w) and f : T — P be as in Definition 2.6 and (T,1) <* (T°,1) and we
have to find a p € P, such that p I+ “In € imT° such that (Vk < w)f(nlk) €
Gp,”.

First define fy : T° — P; by fr(n) = f(n)lk. Let Ay = {n € T° :
I, € Ix}. By 5.6 we can find a tree T*, (T°,1) <* (T*,1), such that whenever
n,v € T* and res(n, ;.\ 4i) = res(v, ;<\ Ai), then fi(n) = fi(v). Let Tp =
res(T*, Uyc41 Ai). Define £ : T¢ — @ by fi (res(n, Uycyys 49) = fuln) (k).

By induction on i = 0,1,2... we can now define P,;;-names n; and
conditions p(i) € Q; such that (p(0),...,p(?)) IFp,,, “n; € imT} and (V£ <
w) fi(nil€) € Gg,” and for all i < j,

IFpyy “(VE) [nil€ = res(n;[¢, U AR
k<i+l

Finally we can find a F,-name 7 such that for all £ I-p, “for all large enough 1

nl¢ = n;[€". It is now clear that I-p, “n € imT™, and V¢ f(n[¢) € Gp,”. Us.2
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6.2A Remark. Note that here as well in the next theorem we need that the
I; ;’s are well separated (compare 6.1(4), (5)) i.e. some have small underlying
sets, others have large completeness coefficients (e.g. in the previous theorem
we required that ideals I; are on sets C pu;, and ideals in I;1; had to be A\;;1-
complete, A\; 11 > p;). To satisfy these requirements we will in applications only
work with iterations in which in every odd step some large enough cardinal is

collapsed, see 1.1(ii)".

6.3 Lemma.
1) IfQ = (Po; Qo+ @ < wy) is suitable for (Ia,g, A8, fa,s : @ < B < wy,
non-limit), and I = (J{Iap : @ < B < w; and « non-limit} then P = P, =

limQ satisfies the I-condition.
(2) We can replace w) by any § such that Ry < c¢fV'§ < Min{\a g : (o, 8) € W*}.

Proof. 1) We will first prove this assuming CH (which is enough for all appli-
cations in this chapter), and then indicate how we can get rid of this extra
assumption. The proof consists of two parts: In part A we define the function

F, and in part B we show that it satisfies the requirements from definition 2.6.

Part A: To each p € P we have associated a countable set {gk (p) : k < w} of

prompt names, such that letting {*(p) = sup{gk(p) :k <w}, we have p € P-
(see 1.12(4)). Let
pairwise disjoint, be such that (V¢ € B;)(i+ 1 < £).

i<w Bi be the set of odd natural numbers > 2, the B; infinite

Let F, g be Py-name of a function exemplifying “P, g satisfies the I, g-
condition.”

Let us explain our strategy; we cannot deal with all pairs («, 3) along a
branch as the branch is countable, and «, § range over an uncountable set. So
along each branch 7 we try to determine the Q-named ordinals, ¢ (f(nle)), so
we get a potential bound o* to larger and larger parts of each f(n[f) and we
shall use the functions Fa;‘,a;“, where o* = Jaf.

We shall define now the function F' which exemplifies “P satisfies the I-
condition,” so we have to define F(n,w, (f(nl€) : £ < £g(n))). If |w| ¢ U, Bi
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define it as any (I, (f(n"(§)) : £ € B)) such that f(n"(¢)) forces a value to
¢™(f(n1e)) for m, £ < £g(n).

Now let |w| € |, Bi.

Naturally we shall use one of the F', 3, but we have to determine which one.
By the way we are defining F', we can assume that for k < £g(n), f(nl(k + 1))
determines (i.e. forces a value to) ¢("(f(n[£)) for £,m < k, so we can define the

following;:

Let ap(n) = 0, and for 0 < k < £g(n) let
a(n) = Max{¢™(f(n1€)) + k : £,m < k}

Note that for any finite or infinite sequence v: if n < v, k < fg(n), then
ak(n) = ax(v).
Let 4 be such that |w| € B;. Then i + 1 < |w| < £g(n), so
def def
(%) a=an) B = a(n)
are well defined.

Let wy = {k € w: |lwNk| € B;}, and let

<~..B7.!7 <ru ve B)) = Fa,ﬁ (nvw:lv <f(77ff)f[a7ﬁ) le w;; U {Eg(ﬂ)}))

(recall  and G should have subscripts 7 and w, which we suppress for notational
simplicity).

Now choose g, > f(n)la such that ¢, € P, and such that ¢, IFp,
“l is isomorphic to I,, I, € I, ", and let F(n,w,(f(v[€) : £ < fg(n))) =
(I, (@ Urv : v =n"(a) and o < Dom(ly))).

Part B. Now we have to prove that P,I and F satisfy Definition 2.6. So let
(T, 1), Jr (k < w) and f be as in Definition 2.6 for the F chosen above, and
(T,1) <* (T*,1) and we have to find the required p. To each branch 7 of T'f
we have associated a sequence (o (n) : kK < w) of countable ordinals. Since we

assume CH we also have X}° = X;, so by Lemma 3.5A we can find 7" such
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that (T1, I) <* (T”, I), and for some fixed sequence (a*(k) : k < w) we have
a*(k) = ak(n) for all n € im(T").

Now we continue as in the proof of 6.2. We let Ay = {1 : I, € Io(2),ax(¢+1)}
and f¢(n) = f(n)la*(£). By 5.6 we can find a tree T*, (T",1) <* (T*,1) such
that for all n, v in T™:

If res(n, Upe i, Ae) = res(v, U, Ae), then f(n)la* (k) = f(v)a* (k).

We let Ty be {resr~(n,Up<i Ae) :m € T*} and fi : Ty — Por(k),ax (k+1) 18
defined by

fi(resr«(n, | Ae)) = p ift f(m)I[e"(k),0"(k+1)) = p

<k

Now note that (J, : n € By) is a system of fronts as in 2.6, and at each
n € Jy, if n € By, then the function F(n,{k : nlk € U,, Jm}, (f(¥) : v S 7))
used the function F o« (0),a+1)(1, {k : nlk € UmEBO Im} (f(W)[e*(0), a*(1))))

(but Fox(0),a*(1) 18 Far(0),ax(1) as a*(0) = 0), so we can find p; € P,(1), such
that for some Py~ (1)-name o

p1 kP, “no € imTy and (V€ < w) fo (o 1) € GPoeiry”-

Continuing by induction, we define p, € Py«(n41) satisfying pnfa*(m +
1) = pm for m < n, such that for some Py« (,1)-name n,

Pn Fpyeinryy “Mn € ImT} and fr(nnlf) € Gp,.,,,, for every £ < w and

for m < n,f < w, Nyl = resp- (1]” 12, Uzsm Ag)”.

So p = UpcwPn € Par, where a* = |J,,a*(n), and there is a P,.-
name 7 such that p IFp,. “n € HmT* C lim " and for every n,m < w,
rest- (nn, Ulgn A¢) = nmIm” (this determines n uniquely as T* C T"). So
plkp . “for every m,{ < w, f (Z] [)la*(m) € Gp,.” hence, by the definition of
RCS, as o* is limit: p I-p,. “for every £ < w, f(nl¢)[a* € Gp,.”.

We have here a problem: A priori, f(n[£) is not necessarily in P,-, (only

in P,,) so f(nl{)la* € Gp,. seems to be weaker than the required “f(nl€) €
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Gp,,”. However, we have f(nl(m+£+ 1)) v ke, “C™(f(nl€)) = ~” for
some v, 80 ¥ < Amie+2(n) =a*(Mm+£+2) < a*
Since also p IFp,. “f(nl(m +£+2))ly € Gp,.”, we conclude that

pIE“C"(f(nlf) <o

for every £, m < w.

So p essentially forces V/ f(n[€) € P,-. Hence clearly p IFp,  “f(n[€) €

”

~GPw1 N

If we do not have CH, we modify the proof as follows: let g : w — w be such that
g(m) < m and (Vn)(3°m)[g(m) = n]. Next, for each o < wy let (p§ : £ < w)
list all finite sequences of the form ((ix, k) : k < k*), Bo =0, B < Br+1 < a,
ir < ig+1 < wsuch that if pf < pg then €1 < £s. Let pf = ((ik(, £), Br(a, £)) :
k < k*(a,?)), second, we write the odd natural numbers > 2 as a doubly
indexed union |J; ,, Bim of infinite disjoint sets (instead of |J; B;). Then,
instead of (%), we define plw,”)] as p?i(") when |w| € B;, where a;(n) was
defined in Part A and so define i = iy, £ = £,,. Next, we define by induction on
|w| when (w,n) is nice: it is nice when k*(ai(n),£) = 0 or for k < k*(a;(n), £)
we have ix(a;(n),£) € w, and plw Nix (e, £), 7lix(e, £)] = p* ™ [(k + 1).

Now if (w,n) is not nice we do nothing, if it is nice, we let k = k[w, 5] be

the k = g(k*(ai(n),£)). We let
a= a[w’ 77] = ﬂik(ai('ﬂ),f) (ai(ﬂ)»f)

,3 = ﬁ[w»ﬂ] = ﬁik+1[w,n] (ai(n)a E)

w* = w*{w,n] = {i: (efwnNi,nli], BlwNi,nli]) = (a,B) and for some m < k*,
t = im(a;(n),£)}. Then we define the function F as before.

In part B, when we check that this construction works, we can only find
a tree T" with the property that for some o*, for all branches n in T”,
limg_,,0r(n) = o*(using 3.5). Let (o*(k) : k < w) be a sequence of ordinals
converging to o*. Now we can shrink 7", so as to use only Fy-(n) a*(nt1)

(n < w), ie. let us define by induction on n (stipulating J_; = {()} J, =
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{n:n € Upcy Jm, and letting w = {£ < £g(n) : 9l € U, <, Jm} for some
k* and ip < ...ig~_1 from w, A, .. i¢ € J;_; and plw,n] = ((ig,a*(€) : £ <
k*) " ((fgn, o* (k*))} (it is a system of fronts, i.e., every branch of 7" meets each
Jy, infinitely often) and let T, (T”,1) < (T°,1) be such that:
ifneT%nel,Jn then (Va)(n (a) € T” = n"(a) € T?)
ifneT%n ¢, Jn then (3la)(n” (a) € TO).

Now we continue as before.

(2) Left to the reader (essentially the same proof). Oe.3

6.3A Corollary. (1) For P = Rlim Q as in the previous lemma, | J P, is

(essentially) a dense subset of P i.e. for every p € P, there are q and a such

a<wi

that pla < g € Pa, qIF “p€ Gp, " (infact 7 € p= g Ik “((r) <a”).

(2) For @ = (P;,Q; : i < 6) as in the previous lemma (so § = w; or just
cf(8) = wy), if @ is a Ps-name of an w-sequence of ordinals (Ps = Rlim Q, of
course) p € Ps then for some i < §,q € P;, and ? a P;-name of an w-sequence

of ordinals, Ps F “p < ¢”, and qIFp, “a@ =f3".

Proof: By 1.13 (or directly from the proof of 6.3). O¢.3a

6.4 Lemma. Suppose Q = (Pa,Qa ta < k) is suitable for (I4 g, Aa,8) Mo, :
(t,7) € W*, ), k is strongly inaccessible |P;| + A; j + pi; + | U 1| < & for every
(a,8) e W*, I € Ipp and let I = |, 51a5. Then P; = Rlim (Q) satisfies the

I-condition.

Proof. This is quite easy, because P, = |J P,. So let F, 3 be a P,-name

a<k
of a witness to “P, g o Pg/ P, satisfies the I, g-condition”, for a < 8 < &,
« non-limit, and let w = (J,.,, 4i, the A;’s are infinite, pairwise disjoint and
n € Aiy1 = n > 141 (so B(k) is an ordinal < k, not just a name). Now we
shall define the function F', so we should define

F(n,w,{f(n1¢) : £ < £g(n))) (See Definition 2.6). Let i be such that |w| € A;,
w*={few:|lwn{ € A;} and let 3(0) = 0, 8(1) = 1 and for k > 1,

k < fg(n), let B(k) = Min{y+k : £ < k = f(nf) € P,}. Now we shall
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use Fgi),(i+1), 50 let Fpgiy peivny (mw™, (F(nTOTB(3), B(i +1) : £ < Lg(n))) be
(I,{r, : v € UI)), and choose ¢} € Pg(; such that ¢} ey, “I = 1,", and
Psgy F“F(m)1B(5) < gp”. Now we can define F(n,w,(f(nl€) : £ < £g(n))) =
(I (f(v) 5 v € Sucr(n))) and Suer(m) = {n"(a) : a < Ul,}, and f(v) =
qg Ur,. Note that 8(k) depends on 1k, so we should have written 8(nlk), see
below.

Now suppose we are given (T, 1), J,, f as in Definition 2.6. (for P = Rlim Q
and I = |J;; Ii ;) and (T, 1) <* (T",1) and we have to find p as required. Let for
everyn € T, B(n) be 0if £g(n) = 0, 1if £g(n) = 1 and Min{y+4g(n) : f(n) € P,
otherwise; so v < 1 = B(v) < 8(n) and B(n) is never a limit ordinal. So by a
repeated use of Lemma 5.3 we can get T*, (T7,1) <* (T*,1) such that:

(%) for every n € T* and n < vy € T, res(v1, Ay) = res(vq, A,) then
GonrelBm) 5 € < bgun) = (puarelB() = £ < fgvs) where A, = {v € T :

[Sucr (V)| < po,pm)}

By induction on n we will now define prompt names (3, of ordinals,
conditions p,, € Ppn and Pg"—names Nn and v, such that p, forces the following
(1) nn € T, Lg(nn) = n
(2) n < vy € lim(res(T™, Ay,))
(3) Vp € T*Vl < w: if vpl = res(p, Ay,), then f(p)[Bn € Gg, and
Brn = B(nn).

For n = 0 there is nothing to do: (10 = (), Bo = 0).

In stage n + 1 we will work in V[Gp, ], where Gp, is a generic filter on Pg,
containing p,,, more formally, we ha:ve Bn < K an;i Gp,, C Pg, generic 0\;er
V such that Il-pn/Gpﬁn “Brn = Bn”. Welet npir1 = vnn+1, Bnyr = B(nt1)-
Since we have used Fg(y,),6(n,.,,) We can find a condition pnny1 in Pg, g,,,

and a Pg, g,.,-name v, such that

”_Pﬁn+l/Pﬁ" “,I_/n+1 re = resrx (P7 A‘nn.\\.]) = f(P) [[IBTw ﬂn-{-l) € GP?"‘§H+1’,

Now we can return to V and translate everything back to Pg,_-names, and get

a condition pp41 from p, and pp 1.
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Since we are using RCS iteration see (1.12)(1), letting 8* = sup,,8n, we can
after w many steps find a condition p € Ps. which is stronger than every p,,
and a Pg--name v of a branch in T, defined by v = | J,, 7». This is as required.

Ue.4

6.5 Lemma. Suppose Q = (P,,Q, : @ < k) is suitable for (I, 85 A, 85 B,
(a,B) € W*), k is strongly inaccessible, ||JI| + Aa,p + Kas < K for any
(o, B) € W*, and I € I3, Qx is a Pc-name of a forcing notion satisfying the
I.-condition and let Iy = Ua’ pla,g,1=1To ULy. Let

A* ={a < Kk : for every i < a,lFp, “cf(c) > Ry” and for every I € I,
VE- UIl > a = I is |a|"-complete” and

VEY UI| > cfa = I is |cfat|-complete}

and assume:

+

(a) for every I € I,: either I is k*-complete or I is k-complete and normal

and K\ A* e I.

(b) for some I* € I, and |JI* = k and all singletons are in I*.
Then P, x Q satisfies the I-condition.

Remark: In Gitik Shelah [GiSh:191], (a) + (b) were weakened to: each I € I is
k-complete (or see XV §3).

Proof. Let Fo 3 witness “P, g = Pg/P, satisfies the I, g-condition” and Fy
(a Pc-name) witness “Q) satisfies the I,-condition” and Ui’ Jkm<w Aijkm =
{3n 4+ 2 : n < w}, the A; j k »’s infinite pairwise disjoint and n € A; j x.m =
1,7, k,m < n.

Now we shall define the function F, so we should define (I, (f(v) : v €
Sucr(n))) = F(n,w, (f(nl€) : £ < £g(n))) (see Definition 2.6). If p € P x Qk

we will write p[x for the Pc-component of p and p(k) for the Q,-component.

Case i. |w| is divisible by 3.
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We let I, = I* and for v € Sucy(n) we have f(v) > f(n) be such that:
if £ < £g(n), n(f) € A*, then for some o < n(¢), f(v)In(¢) € P, (possible
by 6.3(2)). We denote the minimal such a by a,,. Thus, e, < v(¢) and

fW)wv() € P,

Case 4. lw| + 2 is divisible by 3. We act as in the proof of 5.1, i.e., we use
our winning strategy for the game on Q,: let w* = {£ € w : [wN¥|+2 is divisible
by 3}, and we let (I, (r, : v € B)) = Fx(n,w", (f(n1£)(x) : £ < £g(n))).

Choose g, € Px, @y > f(0)Ik, qy IFp, “I = I, for some |,, and let
F(n,w, (f(nle) : £ < Lg(m))) = (b (@, 70) : v =" (a),a <Uly))

Case iii. lw| + 1 is divisible by 3.

So for a unique quadruple (i,j,k,m),|w| belongs to A;;km, (hence
i,J,k,m < |w| < {g(n)) and let w* ={f e w: |wN¥| € A;jkm}

Now we shall use F¢ ¢(n,w*, (f(nl)[[¢,() : £ < £g(n))) were £ < { < K
are chosen as follows

if (i) < n(4),n(d) € A*,n(j) € A*i < k,j < k,k < m, |lwnN k| and
|w N m| are divisible by 3, (so ayk,i, Ontm,i are well defined) then let £ =
otk +k+1,( = anpm,s +m+1

if n(3) < n(4),n(c) € A*, n(j) € A*,i < k,j < k,k=m, lwnk|]—-1is
divisible by 3 and 7(i) < ank,: thenlet & =n(i),{ = an,s + k+1

if (1) > n(s5),n(E) € A*, i < k <m, jlwNk| and |[w Nm| are divisible by 3
thenlet E = o +k+1, ( =apms +m+1

if (i) > n(4),n() € A*, i < k = m, |w N k| is divisible by 3 then let
E=0,{=ampp,:+k+1

if none of the above occurs thenlet £ =0,{ = 1.

So let (T, 1), Jn, f be as in Definition 2.6 and (T, 1)* <* (T",1), w.l.o.g. U,<,, Jn
is the set of splitting points of (T} 1), (shrink T considering T”), and for nota-
tional simplicity we assume J, = {n € T : £g(n) = n}. So for n we have used
w={£:2< tg(n)}. Let o, = n(lg(n) — 1).

We have to find p as required there.
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Assume for simplicity CH. So by Lemma 3.5A, we can find T?, (T, 1) <*

(T1,1) such that

(a) For some By C w X w, for every n € limT?, n(i) < n(j) iff (i,j) € Bo

(b) For p € T! : £g(n) € By iff I, is k+-complete; also £g(n) € By implies and
2g(n) + 2 is divisible by 3

(c) If £g(n) € B2 def {n <w:n+2is divisible by 3, n ¢ B,} then x\ A* €|,
and I, is a normal ideal on &

(d) If ¢g(n) € Bs def {n : n+1 is divisible by 3 } then |JI,, has cardinality
< K.

Let A** = {a € A* : o is strong limit and for every (i,j) € W*, I € I ;, if
i <j<athen |UJIl+Aij+u;+|P| <a}l
Clearly if I € I; is not kT-complete then x \ A** € I (since I is normal)
(e) if (¢g(n) — 1) € By e {n : n divisible by 3} and oyj(m41) € A** then
(being normal) f(7)[oym+1) is (equivalent to) a member of (J{P, : v <
Tni(m+1)}

say to some member of P, , where oy ., < n(m) (see case (i)).

We can conclude (by (c) and (e) above) that without loss of generality
(f) If n € T, 4g(n) — 1 € By then g, € A**. Also n(¢) < k = n(¢) < oy, and
HUlyim| < & = |Ulyim| < oy for every £ < £g(n) — 1, m < £g(n); and if
n"{(a) € T', 1, is k*-complete then a > k.
For n € T! if fg(n) — 1 € By let
Ay ={veT':vanorn<vand |[Ul,|V <o,}
Al ={veT!:vdanorn<vand Ul < cf’ (o)}
By a repeated use of 5.3 (starting at () and going up in T!) we can find
T2, (T, 1) <* (T?%,1) such that
(g) Ifn e T?% 4g(n)—1 € By, £g(n) < m < w, m divisible by 3 and for £ = 1,2,
vg € T? fg(vy) = m+ 1, res(vy, Ay) = res(vg, Ay) then ay, (-1 =
Oy 10(n)—1 (notice that ay,,(n)—1 < 0y < K, so k-completeness suffices).
(h) If n € T? g(n) — 1 € By, fg(n) < m < w, m divisible by 3, then there is
Ynm < oy such that if v € T2, £g(v) = m + 1 then oy, gg(n)-1 < Vim-
Note
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(i) If n € T?,£g(n) — 1 € By, then oy, has cofinality > Ro hence v, = U{vn,m :

m > £g(n), m divisible by 3} is < oy,.

Now if n € T?,¢g(n) € Bs then the function a — v, - (q) is a regressive
function on a subset of x which do not belong to I,,. Hence for some v, {v : v =
n"{(a),v, = v} is not in I,,.

So without loss of generality
() If n € T?,£g(n) € Bz then for some v, < k:
(Ya)[n"(a) € T? = 7y (o) = W]

So w.l.o.g.

(k) If n € T?,4g(n) € Ba, n Qv € T? then |I,| < 7y, or L is |0y peg(m)+1)] -
complete.
If n € T?,4g(n) € By let

T,? = {res(v, 4,) : v € T?}.

So w.l.o.g.

(1) If n € T?,4g(n) € Ba, and for £ = 1,2 vy € T?, n < vy, res(v1,4,) =
res(vz, Ay) then py, [vy = pu, [7y and |UL, | <y, & [UbL,| <y =L, =
|

Let 4o = 0 and {/,, : 1 < m < w} be an enumeration in increasing

var |-

order of {£ < w : £ —1 € By}. For any n € T? (g(n) = £, we define 3, as
Sup{7, : 7 < v,7, defined and £g(v) < £m1}. Remembering that if fg(v) ¢ B,

then [|Jl,| < k or I, is k*-complete it is clear that w.l.o.g.

(m) If n € T% £g(n) = £y, then B, < &; and n < v € T2, £g(v) = Ly implies
B, < 0,. Let, for n € T?,4g(n) = lm,

A;‘ﬁf{uET2:V§1norn§lu, |UI,,|<’7,,}.

For every n € T?£g(n) = 4y we define T? 4t fres(v, Ar) v g
norn < v} and we define f, and 1" (functions with domain C T7) by:
fa(p) = f(W)IBy and I} =1, if n S v € Ty, p = res(v, 4;), is except that
I is defined only if [{J ;| < 7.
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Now look at T(Z),fO and plag (w.lo.g. plogy = plk). As in case (iii) of
the definition of F' we work hard enough (repeating previous proofs) there is a
Pg,-name 1y and q(y € Pg,, such that :

q0 H-pﬁ() “fonyte) € Gp,, for every £” as our strategy will often have
used Fo g, -

Now comes a crucial observation: if Gg, C Pp,, is generic (over V) n €
Ty, £g(n) = ¢1 and res(n, A5) < ny[Gp,], v =n" < a >€ T? then we can (as
in 5.1 and above) find g, € Pp,, and Pg, -name 7, such that: g, is compatible
with every member of G, and

a kg, “fu(nu1€) € Gp, for every ¢, and for every n € T?,[res(n, A}) <
My = rtes(ny), A7) < ng]”. Note that () IF “{or: gy~ (o) € Gp.} # O mod I)".
Hence each g, can play the role of ¢(y in the next step:

We can continue and define g,,7, for every v € T?,V/,, _, £g(v) = £y with
the obvious properties:
(1) Qv € P’rur
(2) qu1ow, V) = g when £g(v) > 0,
3) av IFp,, “ny € UmT2”
(4) qu Fp,, ‘if for every £m, < £g(v), res(v, A}y, ) < Mupe,, and

foitn (Nu1k) € Gupe,, for every k
then for every k < w and 4, < £g(v),
res(n, [k, Ajpe,.) < Muie,, and fu(n1k) € G, and v<y,”.

Now we define a P.-name of a subtree of T2 : T® = {vn : n < £g(v),
£g(v) = £, for some m, q, € Gp, and for i < m gy,p¢, € Gp, and res(v, 4;,,.) <

Nuie; } Clearly,

q¢ IFp, “I3 C T2, T; is closed under initial segments,
Sucys () # @ mod 1, for n € T3 and
if n € T3, £g(n) € By U B then Sucys(n) = Sucrz(n)”
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qq IFp, “for every n € T3, f(n)1[0, k) belongs to G..”.

Now we can use the hypothesis “F'; exemplifies that @ satisfies the I,.-

condition” and case (ii) in the definition of F' to finish. Os.5

6.6 Lemma. Suppose Q = (P;, Qj i < a,j < a) is suitable for (I; ; , A;; ,
pij @ < j < a,iisnon-limit), i(x) < a is non-limit, Gits) C Pisy generic
over V, and (i¢ : { < ) is an increasing continuous sequence of ordinals in
VI[Gi], t0 = i(*), ig = o, each i¢41 a successor ordinal .

In V[Giw)] we define P{ = Fii/Gi), Q¢ = Qic/[Gi(w), (still a Pe-name)
Q' = (P}, Q. : ¢ < B,& < B), then in V[Giv)], Q' is suitable for (I i, Aic i,
icyie * ¢ <& < B, ¢ non-limit ).

Remark. Had we allowed L; ;, A;j, pi; to be suitable names we would have

obtained here a stronger theorem.
Proof. Straightforward. Os.6

6.7 Conclusion. Suppose

() Q@ = (P;,Q; :i < a) is an RCS iteration.

(b) Qq-satisfies the I;-condition, and I; is Re-complete (in V', but I; € V)

(c) if cf(é) < iV (35 < 1)|P;| = i, then for some A,u we have |J;5;1; is
A*-complete and (VI € U, ., I;)(IUI| <u) and [P < A = A<+

(d) if cf(i) =1 & (Vj < 4)|P;| < i then every I € [; is i*-complete or normal,
and e.g. Af ={a<i:cf(a )#Nl}el.
Then Rlim Q satisfies the ({J; ., Ii;)-condition; if in addition  is strongly

inaccessible and A;_, |P;| < & then Rth satisfies the k-c.c.

Proof. We should prove by induction on ¢ < o that for every j < i, P;/P;
satisfies the U{I, : j < v < i}-condition using 5.1, 6.2, 6.3, 6.4, 6.5 (and 5.6).
Us.7
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6.8 Conclusion. We can satisfy the demands of 1.1 by “P satisfies {\ : Ry <
A < |PJ, X regular }”-condition.

Concluding Remark. We could have strengthened somewhat the result 6.6, but

with no apparent application by using a larger A?.

§7. Further Independence Results

In this section we complete some independence results.

7.1 Theorem. The following are equiconsistent.

(a) ZFC + there is a Mahlo cardinal.

(b) ZFC + G.C.H.+ Fr*(Xy) (where Fr™(R;) means that every stationary
S C 82 ={6<Ny:cf(d) =R} contains a closed copy of wy).

Remark. Our proof will use, in addition to the ideas of the proof of Theorem
1.4 also ideas of the proof of Harrington and Shelah [HrSh:99], but, for making
the iteration work, we build a quite generic object rather than force it (as in
[Sh:82]).

2) In b) we can also contradict G.C.H. (using XV §3 for a) = b)).

_ Proof. The implication b) = a) was proved by Van Lere, using the well known
fact that if in L there is no Mahlo cardinal, then the square principle holds for
Ry. So the point is to prove a) = b). As any Mahlo cardinal in V' is a Mahlo
cardinal in L, we can assume V = L, k a strongly inaccessible Mahlo cardinal.

We shall define a revised countable support iteration Q = (P, Qi1 < K),
|P;| < Riyq.Ifdis not a strongly inaccessible cardinal @; is the Levy collapse of
281 to R; by countable conditions (in V). If i is strongly inaccessible then Qs
P[S;] (see 4.6), S is a Pi-name of a stationary subset of S§ = {8 < 1 : cf(d) = No
in V} (note lFp, “é = Np” by 1.1(3)), where §; will be carefully chosen as
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described below. Note that XY = N}’PN, K= NXP“ (again we use 1.1(3)) so Py
collapse no cardinal > « and in V= the GCH holds.

We let P, = Rlim Q. In VP~ we define an iterated forcing Q* = (P, Q5
i < kt), with support of power Ry, such that (in V) for each i, S¥ is a
Pr-name of a subset of S2 which does not contain a closed copy of w;, and:

Q; = {f € (VP)F : f an increasing continuous function from some
a < wp into wp \ §F and if « is a limit ordinal, U, f(¢) ¢ S7} (so Q; makes
S nonstationary).

We shall prove that (if the S;’s were chosen suitably then):

(¥) For every a < k™, forcing by P* does not add new w;-sequences (to V=)

and P contains a dense subset of power < Ry (everything in V).

This implies that P}, satisfies the k*-chain condition, so by a suitable
bookkeeping every P!, -name of S C S2 which does not contain a closed copy
of wy is §} for some i. So easily we can conclude that it is enough to prove (x).

So let a* < k*,p € PX., and T be a P}.-name of a function from w; to
ordinals.

For all those things we have P,-names, (but o* is an actual ordinal in V,
as P, satisfies the k-c.c.). Now in V we can define an increasing continuous
sequence N} (i < k) of elementary submodels of H(k***) of cardinality < &
such that P, Q and all the names involved belong to N§, (N} : i < j) €
N1, N, is closed under sequence of length < [N}| .

Now in V,as V = L, O{x<k:) is strongly inaccessible } D0lds, so we have guessed
(Nf :i<A), 7,p,... in some stage X, (U;c» Vi) Nk = Ny Nk = A Really we
are only guessing subsets of k, so we can only guess the isomorphism type of Ny,
etc., or equivalently, its Mostowski collapse. L.e. let f be a one to one function
from « onto U N, let h be a one to one function from % onto x, and hy : £ — &
for £ <3 belzl';ch that € = h(a, B,7) © a = ho(a) & B = hi(B) & v = ha(y).
Let

A={h(0,0,8) : f(a) € f(B) and a, 8 < K} U {h(1,i,a) : f(e) € N;}
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U{h(z,o,a) : f(a) = <Q: Q—*af7p7 a*>}'

Let (Ax : A < & inaccessible) be a diamond sequence. Let N* be the unique
transitive subset of H(x) isomorphic to (A, €}) where €*= {(a, ) : a < A, 8 <
A, h(0,a,B) € Ay}, if there is one. Let g* : A\ — N* be the isomorphism. Let
for i < X\, N} = N*{gMa) : h(1,i,a) € Ay} and 2> = (@, Q" 12, p*, a*?)
be such that z* = g*(a), a = min{B : h(2,0,4) € Ay} (if there are such a).
Now necessarily W = {\ < & : X inaccessible, and AN X = A, and f maps A
onto N3} is stationary and for A € W, N* is well defined and isomorphic to N X
say by g* : N* — N} and g*(N}) = N} (fori < A), Q* = QI\, g (Q**) = Q*,
g (t*) =1, 9" (") = p, g(a™*) = a*.

So now we will explain what we did in stage X to take care of this situation.

First we will give an overview of how to get the sets Sy; In stage A (an
inaccessible below &, so work in VF=) we use ¢, i.e. Ay to obtain a continuous
increasing sequence (N7 : i < M) of quite close models (which guesses (the
isomorphic type of a) a sequence (N} : i < k) as above). We also guess an
ordinal & = a®* € N> (so actually we are only guessing otp(a* N N})) and
z* “guess” (Q,Q*,T,p, a’\), ...Let Gy C Py be generic over V, p* € Gy. We
now try to construct a sequence (p; : ¢ < A) of conditions in P(:L%‘A N NA[G,]
which will induce an N*[G)]-generic set. If we succeed, letting p; = ¢*(p;) in
V[G,] we have p; € N} N P is increasing and py = lim;<x(p;) will decide all
names in N3[G,] (px has domain N¥[Ga]Na*, pa(B) = U, Pi(B) U {(X, M) }).
Moreover, py(8) will be an actual function (at least above py[B3) rather than
just a Pj-name, for all 8 € Dom(px) C N3[G»]. This will show that in VP,
the set

D% {pe P;. :¥8 € Dom(p)3f : plBIF “p(8) = 7}

is dense, P}. contains a dense subset of cardinality < k(= Ng), in VPx which
is one of the demands in (), [which implies that P}. satisfies the x*-c.c. The
usual A-system argument (recalling that P} used Rj-support) then shows that
also P, satisfies the x*-c.c.)].

We will try to build these p; in otp(N*[Gx] N (a** + 1)) many steps, by
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constructing initial parts (p;[y : i < A) for v € N* N (a** + 1), by induction

on .

However, it is possible that our construction will get stuck in some stage
v € N2 [G)] N (@** + 1). In this case we show that we will have constructed a
stationary subset of A (which guesses S% N A). We will use this set as Sy (and
hence contradict the guess, since no superset of one of the sets S) can appear
in the second iteration as some S}). However, since our guess must be correct
on a stationary set of A’s, the construction will be completed stationarily often.

Before we start the construction of the p;’s, we will try to guess its outcome.
In our ground model V = L we have {3}, so as |Py| = A, we still have in VP
i.e. V[G,], that Ry is A, and {ficaice(s)=r,} holds. Note N2 [G,] is well defined:
GANN} is a generic subset of P,iv "A. So we can choose for each ¢ < A a sequence
(gi,e : € < 1) and a name T7; such that:

(a) every initial segment of the sequence ((7i, (gi,¢ : £ < 1)) : i < A) belongs to
N} GA].

(B) gie € N}MG,] N P%, is increasing with &.

(y) if (g¢ : € < A) satlsﬁes (a) + (B) [i-e., it is increasing with £ and ¢¢ €
(N*N P:.,)], and 7 € N}[G,] is a P;-name of an ordinal then {i : (g :
€ <i) =(gi¢: €& <1i)and 7 =7;} is stationary.

Note that N*[G,] is closed under taking i-sequences (in V*) for i < A so
clause (@) is not necessary.

Now at least for ordinals ¢ such that cf(i) = w it is not clear whether
(gie : € < 1) has an upper bound in P*;)‘A, however we can find a(i) €
NG N (a** +1) and gf € NG\ NPy, ¢; > gigla(i) for £ < i, and
if a(i) < a** then g} Il-p;(i “(¢i,e(a(i)) : € < i) has no upper bound (in
NAGAD.

[Just let a(i) € N;N(a**+1) be maximal such that g & (Ui 4i¢) (3)

belongs to Po(;); hence gf ”‘P;&j) “Ue<igie)(a(t)) € Q:{:)” hence some r, ¢' <
P;&z) is as required] Moreover, we may also assume that g} decides the

value of 7; if 7; is a P} ol z)-name
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Now we define by induction on v € N*[G)]N(a**+1) a set C., a sequence
(Cpgn i B<7,B€NANGA N (a** +1)) and sequences (p,; : i € C,) satisfying
the following:

(i) Each C,, and each Cp, is a closed unbounded subset of A\, Cg, C
CsnC,.

(i) py; € N MG N P?, and is increasing with i.

(iil) py,ilB = pg,i, for B <7, i€ Cgy.

(iv) if (py,j : § < 4), (@55 : j < %) (from the diamond above) satisfy

(¥ < )3 < Dprg < Gich), (K < D(EF < )(giny 7 < pyy) and
a(i) = v then g < py;.

We will define this sequence by induction on . For v = 0 there is nothing
to do. If 7y is a limit of cofinality < A, let v = U§<th) e with ¢ < & < cf(y) =
Yo <7e <. We let

CE N Cye
¢<€<cf(v)
For i € C,, we let py; = U, <cf(v) Pre,i- (This is a union of a sequence of
at most N; conditions which are end extensions of each other (in the sense
that py, s = py,i[ve for ¢ < € < cf(7)), hence this limit exists.) Finally, we let
Cpy = CaNCyNNecct(y) CB,ve [Where we let Co g = A for a > S]. If cf(y) 2 A,
then we can find an increasing unbounded sequence (¢ : € < A) in v N N*[G,]

such that for all ¢ < A we have (v¢ : £ < () € N*[G,]. We let C, be a diagonal

intersection:

def . .
Cy E{i<Aii () Coome}
(<€<i

and for i € C, we let p,; o U{pe,i - € <i}. We let
def . . N
Cﬁﬁ = {’L <A (VJ < ’L) RS Cgﬂj}.

An easy calculation shows that (ii) will be satisfied.

Successor step: Let v = B+ 1. If the set S} as computed by (pg,; : i € Cp) (i.e.
the set {¢ < A : for some i € C3 we have pg ; I- “c € §3"}) does not include a
stationary subset of A, let Cy C Cj be a club set disjoint from this set. We let
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Cpy 4 C,. For g’ < B we let Cg:y = Cgr g N C,. So for i € Cy, we will have

D~,i[B = pg,i, so we only have to define p, ;(5). We will do this by induction on
i: If i is (in C,) the successor of j, then we let p, ;(3) be a condition extending
D~,;(B) such that there is ¢ € C, with ht(p,,;(8)) < € <ht(py,:(8)) (where
ht(r) def sup(range(r)). This will ensure that in limit steps the supremum of
the conditions constructed so far always exists. For limit i, we first take the
supremum of the conditions constructed so far, and, if possible, increase the
condition again to make it stronger than ¢} (g).

Finally if §% as computed by (pg, : i € Cp) does contain a stationary set, we
will choose this as Sy when defining the first iteration Q. Note that this choice
of Sy does not depend on N, ... but only on N*,...so all is O.K. As remarked

above, this will not happen if ¢ has guessed correctly. O71

7.2 Theorem. The following are equi-consistent

(a) ZFC + there is a weakly compact cardinal.

(b) ZFC + G.C.H. + if §’, §” C SZ are stationary, then for some § € 5%, §'n4,
S"” N § are stationary.

(c)ZFC + G.C.H.+4f S; C SZ are stationary sets for i < w; then there is
an increasing continuous sequence of ordinals < wg, (a; : i < w;) such that
a; € S;.

Remark. In (b), (c) we can also contradict G.C.H. (use XV §3 for Con(a) =
Con(c)).

Proof. The implication Con(a) = Con(b) was proved by Baumgartner [Ba],
the inverse by [Mg5]. Now Con(c)=>Con(b) is trivial, and so the point is to
prove Con(a)=-Con(c) which is done just like the proof of theorem 1.4, using
the forcing notion P[(S; : 1 < w1)] from 4.6A. Or.2

Before we prove the next theorem, we recall the forcing notion for “shooting

a club through S”:
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A known forcing is

7.3 Definition. For any set S C wp, define the forcing notion Club(S) by

Club(S) ef {h : for some a < wy we have:

Dom(h) = a + 1,Rang(h) C S, h continuous increasing}

This forcing notion “shoots a club through S”. See on it in [BHK] and more in
[AbSh:146].

For h € Club(S) let

a(h) ¥ max Dom(h)  6(h) % h(a(h))

7.4 Lemma.

(a) If SN S? is stationary, then Club(S) does not add new w-sequences of
ordinals.
(b) If the set

gL {6 €52Nn8:5N6 contains a club subset of &}

is stationary, and CH holds, then Club(S) does not add w;-sequences of

ordinals to V.

7.4A Remark. Instead CH it suffice to have for some list {as : & < wa} of
subsetes of wy that {§ € S? : there is a club C of § such that C C S and
a<d=>Cnac{as: B <al.

Proof: We leave (a) to the reader as it is easier and we will need only (b).

To prove (b), let p € Club(S), 7 a Club(S)-name such that p I-“r is a function
from w; to the ordinals”. Let N < (H(R3), €) be a model of size X; which con-
tains all relevant information (i.e., {S,p,7} C N), is closed under w-sequences
and satisfies N Nwy € S. We can find such a model because we have CH and

S is stationary. Let C C 6 NS be a club set.
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Now we can find a continuous increasing sequence (N, : a < w;) satisfying the
following for all o < wy:

(a) No € N, Ny < N, N, countable.

(b) (Ng:B < a)€ Nay1.

(c) sup(NyNuws) € C.

(d) {S,p,7} C No.
W.lo.g U N, = N. Let pp = p, and define a sequence (p; : ¢ < wy)
satisfying

(0) p;e N

(1) pit1 decides the value of 7(4)

a<wi

(2) Letting a; def min{a : p; € Ny & a > a(p;)}, we demand a(p;+1) >
sup(Ngy,; Nws) and §(p;41) > sup(Ne, Nw2) (see 7.3).
(3) If j < i, then p; < p;.

Given p;, it is no problem to find p;4;. If ¢ is a limit, then letting o* 4o
sup,.;a(pj), 0" def sup;<;6(pj), we have §* = Ny Nwz € S, so we can let
pi = Ujc;ipj U {(a*,6")}. Note that p; € N, because N was closed under
w-sequences.

Finally, J
P, FTEV. Or.4

i<w, Pi can be extended to a condition p,, because J € S. Now

The following solves a problem of Abraham.

7.5 Theorem. The following are equi-consistent

a)ZFC + there is a 2-Mahlo cardinal.

b)ZFC + G.C.H. + {6 < Rz : § inaccessible in L} contains a closed unbounded
subset of ws.

Proof. Con(b) = Con(a):

Let C be a closed unbounded subset of ws consisting of regular cardinals of L.
So each § € C'N S? is inaccessible in L, hence each § € C N S? is Mahlo in L,
hence RY is 2-Mahlo in L, i.e., {A : A <RY¥, A Mahlo in L} is stationary.
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Con(a)=Con(b):

So without loss of generality V = L, « is 2-Mahlo.

We define an RCS-iteration Q = (P, Q: : i < k), where:

1)if 4 is not strongly inaccessible, Q; is Levy collapse of 281 to X; by countable
conditions.

2)if 7 is strongly inaccessible but not Mahlo, Q; = Nm'.

3)if i is a strongly inaccessible Mahlo cardinal, Q; = P[S;] where S; = {A <i: X
strongly inaccessible }.

It should be easy for the reader to prove that P, = Rlim Q satisfies the
k-chain condition, and the S-condition, S = {\: ®; < A < k, A inaccessible (in
L)}.

Lastly in V= let P* =Club({\ < & : X inaccessible in L}). So our forcing is
P.xP*ecV.
Now P* is not even Ri-complete, but still P was constructed so that P* does

not add R;-sequences by 7.4(b), and VF=*F" is as required. Oy

7.6 Theorem. Assume k* is supercompact. Then for some forcing notion P,

in VP, for every regular A > Xy, Fr'()\) holds (and we can ask also GCH).

Proof. W.lo.g. V E GCH. Let k will be the first strongly inaccessible cardinal
k which is x*7-supercompact. Let j : k — H(k), j(a) € H(la|™®) be a
Laver diamond under this restriction. Let <Pi_,Qj' i1 < K,j < K) be an
Easton support iteration. Q; is jo(4) if j(4) = (e(s) : £ < 2) and jo(j)
is a P, -name of a j-directed complete forcing notion, j strong inaccessible,
(V¢ < 5)(JP¢] < j), and the trivial forcing otherwise. Let V; =V, V; = VOP"_ .
Clearly Vi E O{ucx:p is strongly inaccessible }- Let R = Levy(A, < k), so in V&,
for every regular § > k* we have:
(%) if S C {6 < 8 : cf(8) = No} is stationary then for some §* < X\ we have:
cf(0*) = K, and SN * is a stationary subset of §*. (see Fact in X 7.4)
In V; = VE we have £* = £T and define Q, P., Q* = (P}, Q; : i < k%),
Py, as in the proof of 7.1 except that for § < k strong inaccessible, Qs is

suggested by ji1(d) when j(0) = (je(d) : £ < 2) as above, j1(0) a (P, * Ps)-
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name of a forcing notion satisfying the S-condition (in the universe V Fe+1%Fsof
course). So we force with R’ def RxP.xP?, (really we can arrange that P, € V1,
P?* is an R x P.-name). Looking at the proof of 7.1, the only point left is to
prove (x)g for § = cf() > *. If 6 > £*, as the density of P, x Py, (€ V2) is
K*, any stationary S C {8 < 6 : cf(6) = Ro} from VE' contains a stationary
subset from V,. We can use V, F (*)g, so we are left with the case § = &*.

Ifin V, Sis a Pox P%, name, p € Pox Pr,, plF “So C {0 < k™ : cf(d) =
No} stationary”, let

S ={6<kt:cf()=Npand plff “6 ¢ So”}.

For § € Sy choose ps € Py * PX., p < ps, ps IF “6 € S”. Let Sy = {6 € Sy :
ps € Gpowpr, } 50 p Ik 52 C 5o

Let E={a <kt :alimitand § € S;Na = ps € P.* Pt} isaclub of

in V5. It is enough to show that
o W {6 < Kt :cf(d) = K,0 € E and p lkpup; “S2 N3 (which is a

(P.* P%.)-name) is a stationary subset of §”} is a stationary subset of k*.
[Why? As then instead of guaranting S2 N d will continue to be stationary, we
guess such name and related elementary submodel in some o < & and in Q,
take care of S5 N4 having a closed subset of order type w .|
Let Gg C R be the generic subset of R.

In Vi we can find § < s* such that Vi E “k < § < k*, § is strongly
inaccessible” and letting Rs = Levy(k, < 0) < R, Ggr, = Gr N Rs, in V[GRg,]
we have Q, Q*!§ hence P, * Py, (p; i € SNd) and Sy N6 is stationary
(and of course V[Gr,] F § = k). Also in V;[GR,], the forcing notion Py * P}
satisfies the d-c.c. (just as in Vi[GR], P, * P} satisfies the k*-c.c.). So for a
club of 1 < 4, 4 € S; NJ implies p; I+ “S* def {ieSind:p;e GPK,*P;} is
a stationary subset of 6*” (as in Gitik, Shelah [GiSh:310]). Choose such i(x).
If this holds in Vi[GR] too, then we are done so assume towards contradiction

that this fails, so moving back to Vo for some ¢ € P, r € R and p we have

(q,7) Fp.sRr “Pix) < pE Pox Py and for some P_ % (R* (P, * P}))-name E
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we have
w . -
(¢,1,p) IFPE*B*(ER*PE) E is a club of § disjoint to §*”.

Let M < (H((s*)**),€) be such that |M| = s*, H(kT) C M, z =
{k,&*,0,E,q,(r,p), R/GRs, Pc * P3} C M and "M C M.

Let (M',z’) be isomorphic say by g to (M, z), M transitive, so g : M —
M'. We can find B < (H(k*®),€) to which 2’ and M’ belong, such that
letting 6 = 9 N xk we have: 0 is strongly inaccessible §++-supercompact, B =
(H(67%),€) and j(8) = (jo(6),j1(0)) € H(6*) is such that: jo(d) = g(Rs) and
J1(0) is the g(P; * Rs * Pi)-name i.e. (Py *Qy * Ps)-name of g(Py§) * club(S*).
We can finish easily. Or s

§8. Relativising to a Stationary Set

8.1 Definition. For a set I of ideals and stationary W C w; we define when
does a forcing notion P satisfies the (I, W)-condition (compare with 2.6). It
means that there is a function F such that (letting J5 =the bounded subsets
of wy):

if (T, 1), f satisfies the following properties:

(*) (a) (T, 1) is an (TU {J33})-tree.
() f:T—-P
(c) v <nimplies P = f(v) < f(n).
(d) There are fronts Jn(n < w) of T such that every member of J,41 has a
proper initial segment of J,, and:
(a) Ifn € Jn then (Suc(n), by, (f(v): v € Sucr(n))) = F(n, wl), (f(v):
v <A 7)) (where wn] = {k: ik € UpJn}).

(B) UJ, is the set of splitting points of (T, I)
(v) If nis odd, n € J, then I, = J33.
(6) If nis even, n € Jy then I, € I.
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then

(xx) if (T, 1) < (T*, 1), [n € T* N (Up<y J2n) = Sucr-(n) ¢ 1] and for some
limit § € W for every 7 € limT™, § = sup{n(k) : nlk € U, Jon+1 }
then for some q € P we have ¢ IF “(3n)[n € imT*& A\, _, f(nlk) € Gp]”

8.2 Claim. 1)If P satisfies the I-condition, e.g. P is Ra-complete then P satisfies
the (I, wy) -condition.

2)If Wy C W, C wy, P satisfies the (I, Wy)-condition then p satisfies the
(I, W;)-condition.

3) If W C w; is stationary, I is a family of Ro-complete ideals, and the forcing
notion P satisfies the (I, W)-condition then forcing with P does not collapse

N; and preserves the stationarity of W.

Proof. 1) If F witnesses “P satisfies the I -condition”, define F’ such that if
(T, 1), f, (Jn : n < w) are as in Definition 8.1, then for n = 2m, n € J,:

(Sucr(n), (f(v) : v € Suer(n))) = F'((n, wnl, f(v):v In)))
=F((n, {¢:ntte |J Jx}, (fv):v Q)

k<w)

This finishes the proof.
2) Trivial.
3) Suppose p € P, pIF “C is a club of w;”. Choose (T ,1), f, (Jn: n < w) as
in Definition 8.1 such that:
(i) Jn ={neT:tg(n) =2n}
(ii)If n € T, £g(m) odd then Sucr(n) = {n"(0)} and for some o,
(o) min (w3 NRang(n)) < oy < wyq
(8) £(n" (0)) Ikp “ap € C”
(i) f(() =p
There is no problem in this. Let To = {n € T : if k < £g(n), k =4m +2, £ < k,
£ = 2n + 1 then aye < n(k))}. Clearly (T, 1) < (T°,1) and the requirement
in (**) of Definition 8.1 holds. By XV 2.6 (no vicious circle! as it does not use

any intermidiate material) there is a club C* of w; and for each 6 € C*, a tree

Ts such that:
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(a)(T°, 1) < (Ts, )
(b)n € Ts, n € U,, Jon = n € sp(T5, 1).
(c)n € imTs = 0 = sup(Rang(n) Nw1)&d ¢ Rang(n).
This last statement holds also for branches of T in extensions of the universe,
being absolute. Choose § € WNC*, and apply Definition 8.1 to (T3, I) (standing
for T there), and get g as there. Now ¢ I- “Lf(nie) : £ <w} C Gp,n € LmT”
(for some P-name 7). In particular ¢ I- “p € Gp” (as p;y = p) so w.lo.g.p <gq.
Also by (ii) («), (iii) above g IFp “sup(Rang(n) Nw1) = sup {oyp2n+1) : 1 <
w}”. And so g I+ “0 = sup{ayi2nt1) : 0 <w}’. As q IF “f(g[(2n +2)) € Gp”
also (see () of (ii)) we have g I “ayp2n4+1) € C” hence gl “6 € C”.

As 6 € W we finish. ~ Og.o

8.3 Lemma. Let W C wy, be stationary. All the theorems on preservations of
the I-condition (in §5, §6) for Xy-complete I hold for the (I, W)- condition.

Proof. Same proof, sometimes using XV 2.6.





