
Chapter VIII

Countable Usls

The countable ideals of 2) are characterized in this chapter. In particular, we show
that if if is a countable usl with least element, then if c» * Q). This characterization
of countable ideals of Q) is applied to answer questions about automorphisms,
elementary equivalence, and definability over 2. Results proved in Appendix A and
Appendix B.3 are used in this chapter.

1. Countable Ideals of Q)

We show that every countable usl with least element is isomorphic to an ideal of <3).
We first state the theorem which provides the necessary table, and then introduce
the new kinds of trees needed for the construction. We conclude by characterizing
the countable ideals of Q}. Notation and definitions are carried over from
Chap. VII.

1.1 Definition. Let {JS*: ieN} be given such that for each ieN, S£{ — <L, , < ί 5 v,-> is
a usl and j£?0 c jSfί c . We define the usl se = U^iieN} = <L, <, v> by
letting L = \J{Li'.ieN}, defining a ^b for a.beL if for some ieN, a,beLι and
a < i b, and defining a v b for α, b e L to be the element c such that c — a ytb where /
is the least element of TV such that a,beLi.

If each Lt in Definition 1.1 is finite and has a least element, then each j£ff is a
lattice, since every finite usl with least element is a lattice.

Let if = <L, ̂ , v> be a usl, and let i^ = <Lf, ^ i ? vt> be a finite usl such that
j£ζ c if. Let έieL - U be given, and let ^ * = <L*, ̂ * , v*> be the smallest usl
such that LU{α}c L* and ̂ * c if. Then if* is finite since each element b of L* is
expressible as b = V{rf: rf6M} for some MςLU{fl}. Thus we note the following
fact:

1.2 Remark. Let S£ = <L, <, v> be a countable usl with least and greatest elements
u0 and wx respectively. Then there is a sequence {^ :ieN} of finite lattices such that
for each ieN, i^ = <Li5 < i 9 vf>, L{ = {u0,.. .,um), u0, «i eL 0, and

(i) MieN^i ^&i+ί) (as a usl).

(ii) if =
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The passage from embedding finite lattices as initial segments of 3) to
embedding countable usls with least and greatest elements as initial segments of Q)
requires approximating to the usl as in Remark 1.2, and using tables which mesh
nicely for the approximation. In order to pass from a table for j£?f to a table for J?i+U

the table for J^ must be large enough to contain the restriction of a table for J?i+ί,
etc. Hence we will need a sequence of successively larger tables for each ££{ in order
to have the table for iff contain restrictions of tables for larger and larger lattices.
We first define an inclusion relation for tables of different size tuples, and then
define the type of table which will be needed.

1.3 Definition. Let jSf0, ifx be finite lattices such that J^o is a subusl of J ^ . Let JS?O

have universe Lo = {u0,..., uk) and let S£x have universe Lι = {w0,..., wm} where
m>k. For / = 0,1, let (9; be a usl table for ifj. We say that Θγ ^kΘ0 if

1.4 Definition. Let i f be a countable usl with least and greatest elements, and let
{Jίfi'.ieN} be as in Remark 1.2. A double array {Θitj\iJeN} is said to be a uniform
sequential lattice table for {^-.ieN} (see Fig. 1.1) if there is a strictly increasing
function h:N^N such that:

(i) \fiJeN(Θij c Nm+1 & Θitj is finite).

(ii) For all ieN, there is an increasing function ki\N-+N such that
fcf(0) ^ A(/), {ΘiΛiU):jeN} is a recursive weakly homogeneous sequential
lattice table for jSfi9 and for all j\meN, if ^(y) < m < ^(y + 1) then

(iii)

(iv) \/ieN(Ci(j) = \0itj\ is a recursive function).

Fig. 1.1

The idea of the table is to let k x specify the places where we can embed a larger
table for j ^ + 1 into the current table for j ^ . h(ι) tells us where to begin such an
embedding for J^ +i

The following theorem is proved as Theorem 3.27 of Appendix B. i f and iff as
in Remark 1.2 are fixed for the remainder of the section.

1.5 Theorem, {j^ : ieN} has a uniform sequential lattice table.
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For the remainder of this section, fix a uniform sequential lattice table
{Θij . ijeN} for {^lieN} and let the functions/,h,k{ and ct be as in Definition
1.4.'

In order to build an initial segment of 3f which is isomorphic to if, we will have
to satisfy requirements of the type which appear in Chap. VII. Each requirement
mentions only finitely many elements of L, so there is an i such that all the elements
of L which are mentioned by a given requirement lie in Lf. We will try to satisfy such
a requirement by forcing it with an <£Γtree for somey ^ /. Thus we will be faced with
the problem of starting with an ifΓtree Γ, and having to find an ^-subtree Γ* of T
for somey ^ i. Γis determined by {ΘUk: k ^ h(i)} and Γ* by {Θjtk: k ^ h(J)}> Since
uι e Lo, it follows from VI.1.2(ii) that the restriction operation of 1.4(iii) from Θjtk

to ΘUk must be one-one. Thus we can construct Γ* by extending Γ(0) until the level
of Tcorresponding to h{j\ and then thinning Tout from that point on by lopping
off those branches which do not correspond to tuples in the image of the restriction
operation. (We are viewing the strings on Tcorresponding to Θitk as being coded by
the first coordinates, α [ 1 ], of tuples in Θiλ.) It is thus convenient to define the
domain of an J^-tree in the following way. (Recall that 0w is the string of length m
consisting only of O's.)

1.6 Definition. An J?rtree is a map T from

9[ = {0} U {σ e ST: 0h(i) c σ& V/(A(Ϊ) < j <

into ίf which satisfies the following conditions:

(i) Vσ,τe^(σ^τ^Γ(σ)^Γ(τ)) .

(ii) Vσ,τe^(σ|τ-+7X*)inτ)).

If T is an j^-tree and; > /, then we define the j£?rtree Γ* = Exp(Γ,if,), the
expansion of Tfor <£h by Γ*(0) - T(0h{j)) and for all σ e ^ , T*(σ) = T(σ). We note
that since h(ϊ) < h(J), it follows from 1.4(iii) that ^ c ^ : so Exp(Γ,if,) is well-
defined. Thus we have shown:

1.7 Lemma. Lei The a uniform J£rtree andletj > i be given. Then there is a uniform
S£ftree T* <= T such that for all h*: N —• TV, ifTis recursive in h* then T"7* is recursive
in A*.

Let g be a branch of the Jίξ-tree Γ, and let Γ* c Γ be an jS?rtree. Assume that
gf c: T*, and fix^eiV such that/(/) < k ^f(j) ( a n ( i hence ukeLj — L;). Suppose
that g(x) = y. Then it is possible that there is no αeU{Θ i ) m:w ^ A(y)} such that
α [ 1 ] = y. Hence the function gk obtained from g and which corresponds to uk under
the isomorphism of Lemma VI. 1.4 may no longer be defined. We thus modify the
definition of gk by fixing the first tree T in the construction which is an i^-tree for
some j such that uk e L,, and setting JS?k(x) = 0 for all x such that x Φ lh(Γ(σ)) + 1
for any σe^J. In order to make sure that gk is non-degenerate, we impose the
additional condition on subtrees that if T*(ξ) = T(σ) then T*(ξ*j) ^ T(σ*j);
when this extra condition holds, we write Γ* c * T. We note that all subtrees
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defined in the previous two chapters have this property. In particular, the
differentiating trees and splitting trees defined in Chap. VII exist in this setting, and
have the same properties as before.

We begin the construction with the identity tree, and use expansion trees,
differentiating trees, and splitting trees to force the satisfaction of all requirements.
As forcing conditions, we use the set of all recursive trees which are ifrtrees for
some ieN, and order the conditions by c *. By Lemma VI.2.7, all trees constructed
in the previous chapter will be uniform and will force the requirement which they
were constructed to force. We take expansion subtrees to enable us to use an i^-tree
for a large enough / so that all elements of L mentioned in the requirement are in Lv

Hence the methods of Chap. VII can be applied to prove the following theorem.

1.8 Theorem, if = U{J^: i EN} C=>* 2.

We leave the proof of Theorem 1.8, as well as the remaining results of this
section to the reader. A local version of Theorem 1.8 can also be proved. The proof
involves the use of e-total trees, together with the observation that if {i^ : ieN} is
O(2)-presentable, then the table {Θ ji iJeN} for if together with all the functions
mentioned in the definition of table are recursive in 0(2).

1.9 Theorem. //{^ l ieN} is 0(2)-presentable, then if c^* {d: d(2) = 0(2)}.

Theorem 1.8 provides us with a characterization of the countable ideals of 2.

1.10 Corollary. The isomorphism types of countable ideals of 3) are exactly the
isomorphism types of countable usls with least elements.

1.11 Remarks. Theorem 1.8 was proved by Lachlan and Lebeuf [1976]. The bound
produced in Theorem 1.9 was obtained by Richter [1979]. A similar bound for the
case of countable distributive lattices had been obtained by Jockusch and Solovay
[1977].

1.12-1.17 Exercises

1.12 Let if be a countable usl with least element and let d e D be given. Show that
d has 2No distinct if-covers.

1.13 Let if be a countable usl with least element and let ceD be given. Assume
that 5£ is c(2)-presentable. Show that there is an if-cover a of c such that
aeL 2(c)-L,(c).

1.14 Let if be a countable usl with least element, and let I be a countable ideal of
2. Show that I has 2*° distinct if-covers.

*1.15 Let b, d 6 D be given such that d ^ b ( 2 ) and let if be a d-presentable lattice.
Show that if c^* ®[b,d].

1.16 Let se = Ui&i'.ieN} be a 0(3)-presentable usl. Show that ^ ci>* ̂ [0,0 ( 2 )].
(Hint: Note that by Appendix B.3.28, the usl table {Θiti: / ̂  /0 &7'e N} can be used
as part of the table for any countable ^£ with least element for which ^io c ^£. Since
{J£i \ ieN} is A 2 over 0(2), there is a sequence of usls {J£Uj: iJeN} such that for each
ieN, JS?f = lim,^j, and this sequence is recursive in 0(2). Construct the function g
directly such that £^[0,g] is the desired initial segment, i.e., do not use the forcing
approach. Use priorities to change the trees you are working on whenever
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the approximation to if changes. Thus if Ti+1 is a subtree of Γ, chosen respectively
for &i+1J and jSffJ and &i+1J+ιφ ^i+1J but J^ J + x = S£ui, Tt is kept but Ti+ί is
redefined.)

1.17 (Simpson) Let {qi/eiV} be a sequence of degrees such that 0 ( 2 ) =
c 0 < C! < . Show that there is a sequence E = {e^ieN} such that
0 = e 0 < e! < , E is an initial segment of 3, and for all ieN, e!2 ) = q. (Hint:
Use a tree of trees to construct the initial segment, after adjoining a greatest element
to the original sequence. The uniformity allows us to pick e1 ? then e2 independently,
and continue in this way. The paths through the tree are chosen as in the proof of
V.2.12.)

2. Jump Preserving Isomorphisms

We now turn our attention to questions about isomorphisms of cones of degrees, a
special case of which is the characterization of the automorphisms of 3. A complete
characterization of such isomorphisms and automorphisms has not yet been found.
But Theorem 1.8 can be used to obtain partial answers to these questions.

The first question which we consider asks: For which a , b e D is
3[μ9 oo) ca 3[b9 oo)? A special case is the Homogeneity Problem posed by Rogers
[1967]. Rogers noticed that most theorems proved by constructing degrees with
various properties relativize to theorems about 3[a, oo) for every a e D . His
Homogeneity Problem was: Is it true that for all a e D , 3} ~ ^ [ a , oo)? If the
assertion of the Homogeneity Problem is true, then relativized versions of theorems
would follow as corollaries of the isomorphism theorem, and would not require new
proofs. Rogers asked the same question for 3)\ known as the Strong Homogeneity
Problem: Is it true that for all a e D , ^ ' - ®'[a, oo)?

We will show, in this section, that the assertion made in the Strong
Homogeneity Problem is false. The key to the proof, strangely enough, is the same
relativization phenomenon which motivated the problem. The Homogeneity
Problem will be solved in Section 5.

We begin with a theorem which is proved in Appendix A. 1.1. Another proof can
be given which uses only distributive lattices. Thus all the results of this section can
be obtained from the characterization of countable distributive ideals of 3) in place
of Theorem 1.8.

2.1 Theorem. Let a e D t e given. Then there is a countable lattice ££a = <L, ^ , v , Λ )
such that <L, ^ ) has a presentation of degree a, and every presentation of(L, ^ > has
degree > a.

The results which deal with jump preserving isomorphisms involve the study of
bounded initial segments of ^ [ b , oo) for b e D . The next theorem tells us about
degrees of presentations of segments of degrees.

2.2 Theorem. Let a, b e D be given such that b ^ a. Then ^ [ b , a] is a(3)-presentable.

Proof. It is easily checked by writing down the natural formula that for any set A of
degree a, {</,y> eN2:Φf ^τΦf}e Σ$. Fix a set B of degree b. Let h: N -• TV be an
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enumeration, in order of magnitude, of the set C which is determined by the
following conditions: We place ieC if all the conditions hold.

(1) ieΊot(A).

(2) B^τΦf.

(3) V/ ̂  i(JeTot(A)~ΦfφτΦf).

By Lemma IV.3.2, Tot(^4) ^TA
{2). Thus by the previous paragraph, heΔ^ so

h ^ a ( 3 ) by Post's Theorem. Thus we can give a presentation of ^ [ b , a] of degree
^ a ( 3 ) as follows: The domain of the presentation is N, and for iJeN, we define
/ ̂  *j if and only if ΦjJf) ^ τ Φ*jy We now see that (N, < *> ~ 0[b, a]. D

Shore [1981] shows that for all a ^ 0', every presentation of ̂ [ 0 , a] has degree
^ a ( 3 ), so Theorem 2.2 is best possible. Theorem 2.2 combines with Theorem 2.1 to
yield the following corollary.

2.3 Corollary, //^ ' [a , oo) ~ 2'{b9 oo) then a ( 2 ) ^ b ( 3 ) .

Proof. Let jSfa(2> be the lattice for a ( 2 ) specified in Theorem 2.1. By Exercise 1.13,
there is a c e D such that c > a ^ [ a , c ] ~ S£^ and ceL 2 (a). Hence a ( 2 ) = c ( 2 ) . Let
f: ^ '[ a 9 °°) -> @'0>, oo) be a jump preserving isomorphism. Then f(a) = b, and

(f(c))<2> = f(c(2>) = f(a(2)) = (f(a))(2> = b ( 2 ) .

By Theorem 2.2, ®[b,f(c)] is (f(c))(3) = b(3)-presentable. Hence jSfa(a, is b ( 3 ) -
presentable. By Theorem 2.1, we must have b ( 3 ) ̂  a ( 2 ). 0

The result of Corollary 2.3 is the best known except in special cases. Hence there
is no known characterization of the degrees a, b such that ^ ' [a , oo) ~ ^ ' [b , oo). It is
not even known whether there are degrees a / b with ^ [ a , oo) ^ ^ [ b , oo).
Corollary 2.3 is sufficiently strong, however, to provide a negative solution to the
Strong Homogeneity Problem.

2.4 Corollary. 21 φ ^ [ 0 ( 2 ) , oo).

Proof. We obtain a contradiction under the assumption that Q>' ^ ^ ' [ 0 ( 2 ) , oo). By
Corollary 2.3, 0 ( 4 ) = (0 ( 2 ) ) ( 2 ) =ζ 0 ( 3 ), contradicting Theorem IΠ.2.3(ii). 0

Corollary 2.3 can also be used to produce other results asserting the non-
existence of jump preserving isomorphisms. One such result is Corollary 2.5. Others
appear in the exercises at the end of this section.

2.5 Corollary. For all n > 0, ®' φ ^ ' [0 ( n ) , oo).

Proof. If n ^ 2, proceed as in Corollary 2.4. Let n = 1 and assume that
f: 3)' -> &[0\ oo) is an isomorphism, for the sake of obtaining a contradiction.
Then f2 = i°i\Q}' -• ί^'[0(2), oo) is an isomorphism, contradicting Corollary
2.4. 0

One of the most natural problems to consider in the study of Q) and 3}' as
algebraic structures is the problem of characterizing the automorphisms of 3) and
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2'. Again, Rogers [1967] was the first to draw attention to this problem, asking
whether 3 and 3)' have any automorphisms other than the identity. This question is
still unanswered. Two directions have been taken towards resolving this problem.
The first is to show that any automorphism of 3) or 3)' has many fixed points. We
show this for 3)' now and for 3f in Sect. 5. The key result is, again, Corollary 2.3. The
other direction has already been discussed, namely, the study of automorphism
bases for 3) and 3)'. If one could show, for instance, that 3 or 3)' has a countable
automorphism base, then one could reduce the upper bound on the number of
automorphisms of 3) or 3' from 2C to 2X o, where c = 2No.

2.6 Corollary. Let f be an automorphism of 3)'. Then f(a) = a for all a ^ 0 ( 3 ).

Proof. Let c ^ 0 ( 3 ) be given, and let d = f(c). By Corollary IΠ.4.5, there is an a e D
such that a ( 3 ) = a u 0 ( 3 ) = c. Fix such an a, and let b = f(a). Then

b<3> = (f(a))(3) = f(a(3)) = f(a u 0 ( 3 )) = f(a) u f(0(3)) = b u 0 ( 3 ).

Furthermore, b ( 3 ) = f(a(3)) = f(c) = d. Since ®'[a, oo) and &'[b, oo) must be
isomorphic, by Corollary 2.3, b ( 2 ) ^ a ( 3 ). Hence d = b u θ ( 3 ) ^ a ( 3 ) = c. By
symmetry using f"ι in place of f, we conclude that c ^ d. Hence c = d = f(c). 0

2.7 Remarks. Feiner [1970] solved the Strong Homogeneity Problem. Jockusch
found another method to resolve the Strong Homogeneity Problem, and the proof
we give is along the lines of Yates [1972]. Yates used a weaker version of Theorem
2.2; the version we present was proved by Richter [1979]. Richter proved Theorem
2.1 and Theorem 2.2 in order to prove Corollary 2.6. A weaker version of Corollary
2.6 which asserted that all degrees ^ 0 ( 4 ) are fixed by all jump preserving
automorphisms was proved by Jockusch and Solovay [1977]. Epstein [1979]
found a proof of Theorem 2.1 using only distributive lattices, thus allowing the use
of the Lachlan [1968] characterization of countable distributive initial segments of
3) to obtain the corollaries of this section.

2.8-2.12 Exercises

*2.8 Show that for all A c N, {</, j} eN2:Φf^τ Φf} e Σ^.

2.9 Show that for all aeD, if a(2) > 0 (3) then 2' φ ®'[a, oo).

2.10 Show that for all a e D , if a ^ 0' then 3f' φ &'[_*, oo).

2.11 Show that for all aeD, if a e H , then 2>' φ @'[μ, oo).

2.12 Let d e D be given. Show that the following conditions imply that

®'[a, oo) φ ®'[d, oo).

(i) a ( 2 ) > d ( 3 ).

(ii) a ^ d'.

(iii) a e Hn(d) for some n e N.
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3. The Degree ofΊh{2)

We continue our study of Th(^). In studying a theory, we first try to determine
whether or not it is decidable. Corollary VI.4.6 asserts that Th(^) is undecidable.
There are now two directions to pursue. One direction is to find natural decidable
classes of Th(^). This was done in Theorem VII.4.4, and a bound on the complexity
of decidable classes of sentences was provided by Corollary VII.4.6. Thus
Th(^) Π V2 is decidable, but Th(^) (Ί V3 is undecidable. The other direction is to
determine how complicated Ί\\(β) is by determining its degree. We pursue this
direction both for Th(^) and the theories of various subusls of Q} in this section. The
main result states that Ύ\v{β) has the same degree as second order arithmetic.

Several languages will be referred to in the proof of the main theorem. To talk
about Q), we use the language J%, the language of the predicate calculus with one
binary relation symbol ^ (interpreted as the partial ordering of D). An
intermediate second order language ϊ£ι will be used to talk about second order
lattices, i.e., structures 0> = <P, JP, ^ , e>, where J>P is the set of all ideals of 0>. This
language is an expansion of J%, having second order quantifiers which will range
over the countable ideals of a second order lattice used to interpret the language,
and an additional binary relation symbol e (which is to be interpreted as is an
element of over P x 2P). Finally, we will use <£a to talk about the structure
Jί = (N,2N, + , x , ^ α ,G>, and call Th(^Γ) in the language iffl, second order
arithmetic. ££a will be the language of the predicate calculus together with two
ternary first order relation symbols + and x (to be interpreted, respectively, as
addition and multiplication over N)9 a binary relation symbol ^ a (to be interpreted
as the ordering of N), together with second order quantifiers ranging over 2N and a
binary relation symbol e (to be interpreted over N x 2N as is an element of).

Part of the translation of second order arithmetic into Th(yΓ) is carried out in
Appendix A.3. We now state Theorem A.3.4, and refer the reader to the appendix
for a proof.

3.1 Theorem. There is a sentence σ of 5£ι and an effective translation taking any
sentence Θ of second order arithmetic into the sentence 0/ of ^Ί such that

Under this translation, the integers are interpreted by an 32~definable subset P* c p
and ^ P is interpreted by an ^-formula of <£h. Furthermore, there is a recursively
presentable lattice which satisfies σ and whose corresponding P* is recursive.

The sentence σ whose existence is asserted in Theorem 3.1 allows us to pick out
lattices which faithfully interpret arithmetic. The lattices which we will be interested
in are of the form ^ [ 0 , d] for some d e D. Hence it will be convenient to relate the
property of being a faithful translation of arithmetic to degrees.

3.2 Definition. Let σ be the sentence described in Theorem 3.1. We say that the
second order lattice 0> = <P, JP, ^ , e> codes a standard model of arithmetic if

σ. Given any subusl of <3), we identify it with the corresponding second order
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structure interpreting ££ι where second order quantifiers range over ideals. We say
that d e D codes a standard model of arithmetic if ^ [ 0 , d] codes a standard model of
arithmetic.

The final step in the translation of second order arithmetic into Th(^) is to pass
from if/ to $£b, and to find an effective correspondence between a given sentence θ
of if/ with a sentence 0* of S£b such that 3) \= θb if and only if every second order
lattice which satisfies σ also satisfies θ. This translation relies on the characteri-
zation of the countable ideals of 3ι (Theorem 1.8 and Theorem 1.9) and the Exact
Pair Theorem (Theorem II.4.8 and Exercise IΠ.3.13). The local versions of these
theorems are used to obtain results about some subusls of Q). We restate these
results here for the convenience of the reader.

3.3 Theorem. Let i f be a countable lattice. Then i f cz>*^. Furthermore, if <£ is
recursively presentable, then J&? cz»* {d:d(2) = 0 (2)}.

3.4 Theorem. Let c e D, a set C of degree c, a function f:N-*N, and an ideal I of
] be given such that for all deD,

Then there are a, b e D such that a ,b^c 'uf , and for all d e D,

d ^ a&d =sξ b.

We have now laid the groundwork for determining the degree of Th(^).

3.5 Theorem. Th(^) and Th(yΓ) have the same degree.

Proof. We note that for all A c N, {</,./> eN2:Φf ^τΦf}eΣ*. Given a sentence θ
of if&, form the sentence θa of ifα by letting the quantifiers in θ become second order
quantifiers (ranging over 2N) in θa, and replacing all occurrences of ^ in θ with ^ r

(Turing reducibility), a definable relation over Jί in the language 5£a. Then for all

Conversely, let θ be a sentence of ^£ι and let σ be as in Theorem 3.1. Let d be a
variable of 5£h. Form the formula θγ from θ by restricting all first order variables
occurring in θ to elements ^ d, and then replacing all second order quantifiers 3/
and V/ of ^ with first order quantifiers 3j> 3z and My Vz of ^b respectively, and
replacing all occurrences of the formula xel with x ^ y & x ^ z. We now let 0* be
obtained from θ^ by letting 0* be the sentence Md(σι -»θγ). By Theorem 3.1, it
suffices to show that for all sentences θ of JέΊ and all second order lattices &
satisfying σ, & |= θ o 3) |= θ*.

Let ^ = <P,«/p, ^ , G > be a second order lattice satisfying σ. By Theorem 3.3,
there is a degree d such that <P, ^ > - 0[O, d]. Hence ̂  \= θ o ^ [ 0 , d] \= θ. But by
Theorem 3.4, ^ [ 0 , d] μ 0 o ® μ θ*. D

The techniques used in Theorem 3.5 can be used to characterize the degrees of
certain subusls of Q) such as ^ a r i t h , the usl of arithmetical degrees introduced in
Chap. V.5.1. The local facts mentioned in Theorems 3.1, 3.3 and 3.4 will come into
play in these proofs.
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3.6 Definition. Let C c D be given. Then C is closed under jump if whenever c e C ,
then it is also the case that c ' e C . C is a jump ideal iί C is an ideal of Q) which is closed
under jump.

3.7 Definition. Let d e D be given such that d codes a standard model of arithmetic.
The pair <a, b> e D codes W c N for d if V/Ϊ(Λ e W^ dn ^ a & dn ^ b). (Here dn is
the interpretation of the integer n under the coding of arithmetic into

Since the embedding in Theorem 3.3 can be taken into the arithmetical degrees,
a careful examination of the proof of Theorem 3.5 will yield the following result.

3.8 Remark. Let C be a jump ideal of Q) such that for all d e C which code standard
models of arithmetic, the following conditions hold:

(1) If a ,bGC and <a,b> codes W for d, then WeC.

(2) Given V ^ N such that V e C, then there are a, b e C such that <a, b> codes
V for d.

Let <€ = {A c N: A e C}. (Thus by (1) and (2), the sets in <g are exactly those which
are coded by pairs <a,b> for d.) Then Th«7V,^, + , x , ^ α , E » and T h « C , <>)
have the same degree.

In order to apply Remark 3.8, we must be able to determine where exact pairs
can be found. Theorem 3.4 gives some information, but we still must be able to
determine the degrees of the functions/which are mentioned in Theorem 3.4. We
begin to obtain such information after the next definition.

3.9 Definition. Let d e D code a standard model for arithmetic. We then let
D* = {άs:jeN} denote the interpretation of TV in ^ [ 0 , d ] , with dj interpreting the
integer j .

3.10 Remark. In order to find the degree of/, we must translate sentences from ££h to
the language we have used for recursion theory. There is a direct translation when
we are working within @[0, d] and B is a set of degree d. We take a sentence σ of J£b,
let the variables range over TV, and replace all subformulas of the form x ^ y with
φx ^τΦy Since ^ 7 is Σf definable over ^ [ 0 , d ] , an 3,,-sentence of <£h is thus
f i h f l l l d i h i h i i BB

+3.

y

faithfully translated into a sentence which is in ΣB

3.11 Lemma. Let d e D code a standard model of arithmetic and let Bbea set of degree
d. Then there is a function / : N -• N such that D* = {Φ?(j) ' j e N} and for which for all
jeN, ΦB

f(j) has degree dj and f ^ d ( 5 ).

Proof Let E c N be defined by e e £ ^ Φ ^ e D * . By Theorem 3.1, D* has an 3 2

definition in j % , so by Remark 3.10, EeΣB

5. Define £\ c E by

Then Eγ eΣB and Eγ has exactly one index for each djGD|. Define f(J) to be the
index for dj in Ex for eachyeΛf.

By Theorem 3.1, ^ f l is interpreted by an 32-definable relation in j % , over the
universe DJ; we let ^ * be this relation. By Remark 3.10, there is a Σf-definable
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relation < x which interprets ^ * on domain Eγ. By Theorem IIL2.6(i), both E1 and
^ 1 are recursively enumerable in a set C of degree d(4). Let h: N -+ N2 be a function
of degree ^ d ( 4 ) with range ^ 1 ? and let ^ s

x be a maximal linear ordering which
extends ^ s

x~ * and all of whose ordering relationships are specified by {h(i):i ^ s}.
If several choices for ^ \ are possible, we choose the one whose domain is the
smallest lexicographically. Then <* is recursive uniformly in d(4). Note that for all
jeN,f(j) is theyth element of Eγ under the ordering lims ^ . Hence by the Limit
Lemma, f < h ' * ζ d ( 5 ) . \

We are now ready to characterize the sets of integers which can be coded by
exact pairs lying in a jump ideal of Q).

3.12 Lemma. Let W ̂  N and a, b, d e D be given such that d codes a standard model of
arithmetic. Let f:N^> N be given such that D* = {ΦB

f(j):J£N} and for all jeN,
Φf(j) = dj and f ^ d(5). Then:

(i) // <a, b> codes W for d, then W < f u ( a u b u d)(3).
(ii) IfV^Nis given such that V ̂  τ W and f u d ' ^ W then there are a, b ̂  W

such that <a, b> codes V for d.

Proof, (i) Fix A, B, D c N having degree a, b, and d respectively. Then

eeW<^> Φ^{e) ^TA& Φ^{e) ^TB. Hence to decide whether e e ^ , w e must compute

f(e) and then ask a Σ* ®B@D question, which can be answered by an oracle of degree

( a u b u d ) ( 3 ) . We now see that W ^ f u ( a u b u d ) ( 3 ) .
(ii) Fix a set D of degree d, and let e0 be the least integer such that Φfo = TV.

D e f i n e g:N^ N by

e0 if OφV

if OeV

and

m (the least index for ΦD

g{n) ® Φ% + 1) if n+\eV.

Then g ^ τ / © Kand by Theorem 3.4, there are a, b e D such that <a, b> codes Kfor
d and a , b ^ g u d ' ^ V u f u d ' ^ W . For the ideal induced by g contains
{Φ^(e):ee V}9 and since D f consists of a set of independent degrees, this ideal does
not contain Φ j ^ if e φ V. 0

We can now obtain a sharper version of Theorem 3.5.

3.13 Theorem. Let C be a jump ideal of Q) and let <β = {A c TV: AeC}. Then
Th((N, <<g9 H-, x , sζβ, G> and Th(<C, ^ » have the same degree.

Proof By Remark 3.8, it suffices to show that (1) and (2) are satisfied. Since C is a
jump ideal of 3ι, (1) follows from Lemma 3.12(i) and Lemma 3.11, and (2) follows
from Lemma 3.12(ii) and Lemma 3.11. D

Transfinite iterates of the jump operator are useful for locating degrees of
theories.

3.14 Definition. Let B c N be given. Define Biω) c N2 by (B(ω))[n] = B{n) for all
n G N, and let B(ω) have degree b ( ω ) where b is the degree of B. b ( ω ) is called the
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ω-jump of b. The jump operation can be iterated through the recursive ordinals in a
well-defined way. Thus b ( ω + ω ) = (b ( ω )) ( ω ) .

The following corollaries can be drawn from Theorem 3.13.

3.15 Corollary. Th(^ a r i t h ) has degree 0 ( ω + ω ) .

Proof. By Theorem 3.13, Th(^ a r i t h ) has the same degree as Th«7V, s/9 + , x , ^ α , e »
where s/ = {A c N: A is arithmetical}. The latter theory has degree 0 ( ω + ω ) . 0

Theorem 3.13 also provides us with another proof of Corollary V.5.14.

3.16 Corollary. 3arith and 3 are not elementarily equivalent.

Proof. Th(^ a r i t h ) and Th(^) have different degrees. D

The proof of Theorem 3.5 can be extended to yield information about the
definability of various degrees and classes of degrees over 3) from a parameter. The
parameter appears because we are translating formulas, rather than sentences,
between languages. A sample theorem is proved below. This topic is pursued
further in the exercises.

3.17 Theorem. Let B c C be given such that C is a jump ideal of 3) and B is closed
downwards and under jump. Let <€ = {A c N: AeC}. Then B is definable over
<C, ^ ,0 ( 2 )> if and only ifB is definable over Jί^ = (N,%, + , x , ^ Ω ,e>.

Proof. Note that B is definable over Jί^ if and only if ^ = {A c N\ AeB} is
definable over Jf%. Let θ be a formula of <£h which defines B over <C, ^ , 0 ( 2 ) > .
Define the formula θa of iffl by letting the quantifiers in θ become second order
quantifiers (ranging over #) in j£?fl, replacing all occurrences of ^ in θ with < τ

(Turing reducibility), and replacing the parameter 0 ( 2 ) with a set of degree 0 ( 2 )

(which must be definable in jS?fl over Jf<g since ^ is a jump ideal of 3>). Then for all
c e C and all sets A of degree c, <C, ^ , 0 ( 2 ) > h 0(c)oJT^ \= ()a(A).

Let x be a formula of iffl having one free second order variable such that
7 e J o Jf<β (= x( Y). For each formula θ of ifα, form the formula θγ as in the proof
of Theorem 3.5, and let σ and σx be as in the proof of Theorem 3.5. Note that xx will
have three free variables, d, wλ and w2. We claim that yeB<=> <C, ^ , 0 ( 2 ) > | = τ*(y)
where τ*(y) is the formula

Vrf ^ Q(2Xσι(d) —>• Vwl5 w2 ^ y U 0(2)(xι(d, wu w2))).

To verify this claim, first assume that yeB. Fix any d ̂  0 ( 2 ) such that
<C, Jc, ^ , e> \= σi(d), noting that by Theorem 3.1 and Theorem 3.3, such a d must
exist. Fix degrees w1? w2 ^ y u θ ( 2 ) . By Lemma 3.11 and Lemma 3.12(i), <w1? w2>
codes a set W for d such that W ̂  0 ( 7 ) u ( y u 0 ( 2 ) ) ( 3 ) < y(7). Since B is closed
downwards (anything ^ an element of B is in B) and under jump, WeM. Thus by
the proof of Theorem 3.5, <C, ̂ > |= τ^d, w1? w2), so <C, ^ , 0 ( 2 ) > H τ*(y).

Conversely, assume that <C, <,0 ( 2 ) > |= τ*(y). Let d ̂  0 ( 2 ) be given such that
d e G L 2 , <C, J^c, ^ , 6 ) ^ cri(d), and the function / specified in Lemma 3.11 is
recursive. Such a d exists by Theorem 3.1 and the proof of Theorem 3.3. By Lemma
3.12(ii), any set Γey is coded by a pair <w1?w2> for d with w1 ?w2 ^ y u θ ( 2 ) .
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τ1(d,w1,w2)andsobytheproofofTheorem3.5,.y^ (= τ(Y).

3.18 Remarks. The first results dealing with definability over degree-theoretic
structures were obtained by Jockusch and Simpson [1976] who considered the
structure 3'. Theorem 3.5 was proved by Simpson [1977]. Simpson [1977] also
proved some of the corollaries and definability results for 3' which we mentioned in
this section for 3. Simpson produced a direct coding of Th(J^) into Th(^),
bypassing the intermediate languages and theories. Our proofs closely follow those
of Nerode and Shore [1979], [1980], and involve the structure 3 with an additional
parameter. Corollary 3.16 was proved by Jockusch [1973] in a different way (see
V.5.14).

We now state some further definability results which are due to Nerode and
Shore [1980] and Jockusch and Shore [1983a]. Weaker versions of some of these
results can be found in Jockusch and Simpson [1976] and Simpson [1977]. The
reader is referred to Rogers [1967] for a definition of the A\ sets.

3.19 Further Results
(i) Let ^arithΦ) be the degrees arithmetical relative to b. Then 3arith — ̂ arith(b)

only if b is arithmetical.

(ii) Let A c β ς C be jump ideals of 3. Then B is definable over <C, ^ , A> (i.e.,
a predicate picking out the elements of A is introduced into the language) if and only if
£8* is definable over JV^ from a predicate for srf*.

(iii) For all n ^ 1, the relation a is A\ in b is definable over both <D, < , D a r i t h>
andφ,

(iv) The relation a = b ( ω ) is definable over both <D, < , D a r i t h> and <D, < , 0 ( 2 )>.

(v) A relation R ^ (D[0(ω), oo))n is definable over Jί if and only if it is definable
over <D, ̂ , D a r i t h > . Also, <D, < , D a r i t h > can be replaced with <D, ̂ , 0 ( 2 ) ) in this
statement.

(vi) Let C be a jump ideal ofQ) and let be C be given such that b ^ 0 ( 7 ). Then b is
definable over Jί if and only ifb is definable over <C, <,0 ( 2 ) >.

3.20 Remarks. The idea of looking at definability from parameters was also studied
by Epstein [1979]. Harrington and Shore [1981] have shown that there is a jump
ideal of 3) which is captured somewhere between the arithmetical and hyper-
arithmetical degrees and which is definable over 3. They use this ideal instead of
^arith to obtain definability results over 3 it eliminates the necessity of adding a
parameter or set to the language. The methods of proof of that theorem are
substantially different from those used in this book, so we will not prove that result.
The Harrington and Shore result was improved upon by Jockusch and Shore
[1983a] who showed that the set of arithmetical degrees is a jump ideal of 3 which
is definable over 3. These results are useful for giving simpler proofs than we have
given for the results presented in the next two sections, and sharpening the
statement of some of those theorems. We refer the reader to Shore [1981a] for
statements and proofs of some of these results.
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4. Elementary Equivalence over Q)'

We showed in Sect. 2 that the Strong Homogeneity Problem has a negative
solution. Other homogeneity problems are considered in the next two sections. In
this section, we show that we still get a negative answer if we weaken the problem,
and ask for elementary equivalence instead of isomorphism. Thus we show that it is
not the case that for all b e D , 3)' = ^ ' [b , oo). In the next section, we consider
homogeneity problems over Q) rather than 3)'.

The idea of the proof is to use definability results, and to show that we can
differentiate between theories by using a sentence which asserts that there is an
exact pair below the double jump of the least element of the structure which codes a
set of degree ^ 0 ( 5 ). This sentence cuts down sharply on the set of beD such that
®'[b, oo) = &.

4.1 Theorem. If 2' = @r[b9 oo) then b ( 2 ) ^ 0 ( 5 ).

Proof. The language used for 3)' is $£ 'b, an expansion of <£h by a unary function
symbol which is to be interpreted as the jump operator. Assume that b ( 2 ) έ̂ 0 ( 5 ). We
note that we have a definable constant m in our language which is interpreted by c in
3'[c9 oo) for all c. m just satisfies the sentence asserting that it is the least element of
the structure. We show that the sentence τ mentioned above differentiates between
3' and 3f[b9 oo) as the sets which can be coded by exact pairs in these structures are
different.

Consider the sentence which asserts that there are degrees a1 ? a2 and d and a set
V c N such that d ( 2 ) = m ( 2 ), d codes a standard model of arithmetic, a1 ? a2 ^ m ( 2 ),
<a 1 ? a 2 > codes Kford, andV ^ 0 ( 5 ). This sentence can be written as a sentence of <£a

which is faithfully interpreted over Jί. Hence by the proof of Theorem 3.5, this
sentence is interpreted faithfully by a sentence τ of i f J,. By Lemma 3.11 and Lemma
3.12(i), 3' ψ τ. By Theorem 3.1, a relativized version of Theorem 3.3, and Lemma
3.12(ii), if ^ ς TV and V ^ b ( 2 ) , then there is a pair <a 1 ? a 2 > and a degreed ^ bsuch
that d ( 2 ) = b ( 2 ) , d codes a standard model of arithmetic, b ^ aj ^ b ( 2 ) for 7 = 1,2
and <a 1 ? a 2 > codes V for d. Pick such a set V of degree b ( 2 ) . Then V ^ 0 ( 5 ), so
0'[b, 00) |= τ. 0

The following corollary is now immediate.

4.2 Corollary. There is a degree b e D such that 3)' ψ ®'[b, 00).

The methods of Chap. XII will allow the condition b ( 2 ) ^ 0 ( 5 ) to be replaced
with the condition b ( 3 ) = 0 ( 3 ). The proof of Theorem 4.1 makes heavy use of the
definability of the degree 0 over Jί. Shore [1981a] proves a result which replaces the
degree 0 with any definable degree a and works for Q) in place of &. Jockusch and
Shore [1983a] improved this result, showing that for such a, if ^ [ a , 00) = @[b, 00)
then a and b have the same arithmetical degree. The definability of a is not necessary
if ^ replaces =.

4.3 Remarks. The first theorem similar to Theorem 4.1 was proved by Simpson
[1977] with the conclusion being that b ( ω ) = 0 ( ω ). Simpson then obtained Corollary
4.2. Theorem 4.1 as stated and the exercises below were proved by Nerode and
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Shore [1980]. The improvement of the condition to b ( 3 ) = 0 ( 3 ) is due to Shore
[1982].

4.4-4.5 Exercises

4.4 Show that if a e D is definable over Jί and ^ ' [b , oo) = ί^'[a, oo) then
b ( 2 ) < a ( 5 ).

4.5 For each neN and each jump ideal C of Q), let <C, < , (n)> be the structure
which interprets the unary function symbol of <£'h as the «th jump. Fix a jump ideal
C of Q) and k,neN such that k Φ n. Show that <C, ^ , ( n ) > φ <C, ^ , ( k ) > . (Hint: A
sentence which differentiates between the structures asserts that there is a standard
model of arithmetic coded by a degree d ^ m ( 2 ) (m is, again, the least element of the
structure and m ( 2 ) denotes two consecutive applications of the operation of the
structure hence over <C, ^ , ( n )>, m ( 2 ) is really the degree of the element m ( 2 n ) under
the true interpretation of the jump operator) and a pair of elements below m ( 6 )

which codes a set whose degree is not ^ 0 ( 6 n + 3 ).)

5. Isomorphisms Between Cones of Degrees

The homogeneity problems deal with questions about cones of degrees. (A cone of
degrees is a class of degrees of the form ^ [ b , oo) for some beD.) Given a, b e D ,
Rogers [1967] asks if ^ [ a , oo) ~ ^ [ b , oo). This question is known as the
Homogeneity Problem. A variation of this problem also appears in the literature,
namely, for a, bED, is ^ [ a , oo) = ^ [ b , oo)? We show that in both cases, there is a
choice of a and b for which there is a negative answer to the problem.

The homogeneity problem is solved by showing that any isomorphism between
cones of degrees has a cone of fixed points (hence any automorphism of Q) must also
have a cone of fixed points). We then show that Q) φ ^ [ b , oo) where b is chosen
sufficiently large so that it is the base of a cone of minimal covers.

The following lemma allows us to compute the vertex of a cone of fixed points
for any given isomorphism between cones of degrees. It shows that the set of degrees

Fig. 5.1
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d ^ b such that ^ [ b , d] has a sufficiently nice presentation is squeezed between two
known classes of degrees. The lemma will thus allow us to compute bounds on the
degrees in that set. The comparability relationships between the degrees mentioned
in the proof are pictured in Fig. 5.1.

5.1 Lemma. Let a , b , c e D t e given such that b ( 2 ) < c and a ^ c ( 3 ) . Let F b[c,a] =
D[c,a] n {d ^ b :d ( 3 ) ^ a} and E b[c,a] = {d > c:3eeD(^[b,d] is ̂ -presentable
&e < a)}. Then F b[c,a] <Ξ E b[c,a] <= D[c,a].

Proof. It follows from the fact that ®[b,d] is d(3)-presentable for all d ^ b that
Fb[c, a] c Eb[c, a]. Suppose that d ^ c and d ^ a. By Theorem 1.1 of Appendix A,
there is a lattice of degree d, i.e., a lattice i f which has a presentation of degree d and
such that any presentation of !£ has degree > d. By Exercise 1.15 and since
b ( 2 ) ^ c ^ d, there is an f < d such that S£ ~ ®[b,f]. If e is the degree of a
presentation of ®[b,d], then since ^[b, f] is a sublattice of ^[b,d] with least and
greatest elements, ^ [ b , f ] must also be e-presentable. Hence by choice of if, d < e.
Since d ^ a, e ^ a so d<£Eb[c,a]. 0

We now show that every isomorphism between cones of degrees has a cone of
fixed points. We prove the theorem by choosing one of the cones to be the set of all
degrees, and note later that the result relativizes. Figure 5.2 is useful for following
the proof.

Fig. 5.2

5.2 Theorem. Let b e D t e given and let ψ: <3) -• ̂ [ b , oo) be an isomorphism with
inverse ψ " 1 . Let c = ψ " 1 ( b ( 2 ) ) u θ ( 2 ) and let a ^ c ( 3 ) u (\|/(c))(3) be given. Then
ψ(a) = a.

Proof. We note that sup(D[c, aj) = a. Also, by Exercise IV.4.16, sup(F0[c,a])
= a. By Lemma 5.1, F 0 [c,a] c E 0[c,a] c D[c,a] so sup(E0[c,a]) = a. Let
ψ(E0[c,a]) be the image of E 0 [c,a] under ψ. Then ψ(E0[c, a]) = (d^\ |/(c):
3e G D(^[b, d] is e-presentable & e < a)} = Eb[\|/(c), a]. We note that
sup(D[ψ(c), a]) = a, and by Exercise IV.4.16, sup(Fb[ψ(c), a]) = a. By Lemma 5.1
(which we can apply since v|/(c) ^ b ( 2 )), Fb[\|/(c),aJ c Eb[v|/(c), a] c D|ψ(c),a] so
sup(Eb|\|/(c), a]) = a. Since ψ is an isomorphism, \|/(a) = ψ(sup(E0[c,a])) =
sup(ψ(E0[c, a])) = sup(Eb[ψ(c), a]) = a. D



5. Isomorphisms Between Cones of Degrees 177

Theorem 5.2 relativizes to yield the following result.

5.3 Corollary. Let b,deD be given, and let ψ: ^ [ b , oo) -• ^[d, oo) be an isomor-
phism. Then there is a c e D such that \|/(a) = a for all a ^ c.

Theorem 5.2 also immediately tells us that every automorphism of Q) has a cone
of fixed points.

5.4 Corollary. Let ψ be an automorphism of Q). Then there is a c e D such that
\|/(a) = a for all a ^ c.

A vertex for the cone of Corollary 5.4 can be computed from Theorem 5.2, and
depends on the degrees of various images and inverse images of ψ. Jockusch and
Shore [1983a] have used other methods to show that the vertex of such a cone can
be chosen to be the degree 0 ( ω ), independently of ψ.

The solution to the Homogeneity Problem uses two facts proved earlier in the
book. We restate these facts in the following remark for the reader's convenience.
The theorems are proved as Theorem V.5.3 and Theorem V.5.12 respectively.

5.5 Remark. For all n e N, 0 ( n ) is not a minimal cover. (This result is applied in its
relativized form: For all n e N and d e D, d(n) is not a minimal cover for any b ^ d.)
Also, there is a cone of minimal covers. In fact, Jockusch and Shore [1983a]
compute the vertex of such a cone as 0 ( ω ). (This result is also applied in its relativized
form: For all beD, ^ [ b , oo) contains a cone of minimal covers of degrees ^ b.)

We now have enough computational information to show that the cone of
degrees above the vertex of a cone of minimal covers above 0 ( 2 ) is not isomorphic to
Q). For such an isomorphism ψ would have the property that ψ(0 ( 2 )) has an eighth
jump which is the vertex of a cone of minimal covers above \|/(0(2)).

5.6 Theorem. There is aneeD such that for all b ^ e, ^ [ b , oo) φ Q>. (e can be chosen
as any vertex of a cone of minimal covers above 0 ( 2 ), so by Remark 5.5., we can choose
e = 0(ω).)

Proof By Remark 5.5, we can fix a degree e which is the vertex of a cone of minimal
covers above 0 ( 2 ), (i.e., for all b ^ e, b is a minimal cover of a degree ^ 0 ( 2 )). Let
b > e be given. Assume that there is an isomorphism ψ: 2 -• £#[b, oo) in order to
obtain a contradiction. Let c = ψ " 1 ( b ( 2 ) ) u θ ( 2 ) . By Theorem 1.1 of Appendix A
and Exercise 1.15, there is an f ^ c and a lattice if ~ ί^[0, f ] such that for all d e D,
if if is d-presentable then c ^ d. (if is obtained as in the proof of Lemma 5.1.) Since
ψ is an isomorphism, ^ ~ ^ [ b , ψ(f)]. Note that ®[b, ψ(f)] is (\|/(f))(3)-presentable,
so c ^ (v|/(f))(3) < (ψ(c)) (3).

By choice of c, ψ(c) = b ( 2 ) u ψ(0 ( 2 )). Since 0 < 0 ( 2 ), b = ψ(0) < ψ(0 ( 2 )), so
Ψ(c) ^ (ψ(0 ( 2 ))) ( 2 ). Hence c ^ (ψ(c)) (3) *ζ (\|/(0(2)))(5). By Theorem 5.2,
a = (ψ(0 ( 2 ))) ( 8 ) is the vertex of a cone of fixed points. Since a ^ b ^ e, a is also the
vertex of a cone of minimal covers above ^[\|/(0 ( 2 )), oo). But by Remark 5.5,
a = (\|/(0(2)))(8) is not a minimal cover of any degree above ψ(0 ( 2 )), a
contradiction. 0

The last homogeneity problem is to decide whether for all c e D, Q) = £^[c, oo).
The answer, again, is a negative one. A formula σ(x) in the language t£h can be
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defined having the property that if there are b , c e D such that ^ [ c , oo) [= σ(b) then
^ [ b , oo) ~ ί^[0(5), oo). This reduces the elementary equivalence problem to an
isomorphism problem which Theorem 5.6 has already solved. The formula σ(x)
asserts that there is an isomorphism between ^[x , oo) and ^ [ 0 ( 5 ) , oo). Since 0 ( 5 ) is
definable in second order arithmetic, such an assertion can be made over Jf.
However, as in the proof of Theorem 3.17, a straightforward translation of this
formula into ££b will introduce parameters. A more careful translation must
therefore be given.

5.7 Theorem. There is aneeΌ such that for all c ^ e, Q) ψ ^ [ c , oo). (e can be chosen
to be 0(ω).)

Proof. We apply the translation given in the proof of Theorem 3.5 to formulas, and
note that since 0 ( 5 ) is definable over JV, there is a formula G{x,y, d) of S£b such that
for all be D and every deD[b, oo) which codes a standard model of arithmetic in

b, oo),

b9 oo) (= G(x, y, d) o the set 0 ( 5 ) is recursive in the set W coded by the
exact pair <x,y> for d.

In other words, G(x9y, d) holds in ^ [ b , oo) if 0 ( 5 ) is recursive in a set Wcoded by an
exact pair (over ^ [ b , oo)) for d. Similarly, there is a formula L(b,x,y,d,a) of S£b

such that for all c e D and d e D[c, oo) for which d ^ a and d codes a standard model
of arithmetic in ^ [ c , oo)

®[c, oo) μ L(b,x,y,d,a)ob = sup(R)

where

(1) R = {u ^ a:Vv,z ^ u(if <v,z> codes S ford and <x,y> codes W ford then

In other words, L(b, x, y, d, a) says that b is the sup of the degrees u such that only
sets recursive in W (coded by <x, y » are coded by exact pairs below u.

By Theorem 3.1 and the proof of Theorem 3.3, we can fix d* such that
d* ( 2 ) = 0 ( 2 ) and d* codes a standard model of arithmetic in which the function/of
Lemma 3.11 is recursive. Let R be as in (1) but with 0 ( 2 ) and d* in place of a and d
respectively. Let x, y e D be given such that <x, y> codes a set Woϊdegree ^ 0 ( 5 ) for
d*, and let W have degree w. Let Q = {ueD:u ^ 0 ( 2 )&u ( 3 ) ^ w} and let
T = D[0, w]. The proof depends upon the following fact:

(2) Q c R c T& sup(Q) = sup(T) = w.

We now verify (2). First note that since w ^ 0 ( 5 ), by Exercise IV.4.16, there are
x 0 , . . . , xn G Q such that u{Xi: / ̂  ή] = w. Hence w = sup(Q). Clearly w = sup(T).
If ueQ, then by Lemma 3.12(i), any set S coded by a pair ^ u for d* has degree
3 C f u ( u u d * ) ( 3 ) . Since / is recursive, d* ^ 0 ( 2 ) and ueQ, f u ( u u d * ) ( 3 ) <
u ( 3 ) ^ w. Hence Q c R. Since/is recursive and d* ( 2 ) = 0 ( 2 ), it follows from Lemma
3.12(ii) that if 0 ( 2 ) ^ u ^ w and ueR, then there is an exact pair below u which
codes a set of degree u for d*. Hence R c T. Thus (2) holds.
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Let @\= G(x,y,d*). Then by (1) and (2),

(3) 2 f= L(b, x, y, d*, 0 ( 2 )) o b = sup(R) <^ w = b.

The isomorphism from ^ [ 0 ( 5 ) , oo) to ̂ [ b , oo) which is produced is a map from
[Wc N:0i5) ^ τ W} onto ^ [ b , oo) which is invariant on degrees and one-one,
onto, and order preserving when viewed as a map on degrees. This isomorphism
takes W coded by <x,y> for d such that G(x,y,d) onto the degree b such that
L(b, x, y, d, a). It follows from (3) that for a = 0 ( 2 ) and d = d*, this map induces the
identity map on ̂ [ 0 ( 5 ) , oo). We now write down a formula which asserts that the
map discussed above is an isomorphism of ^ [ 0 ( 5 ) , oo) with 2[_x9 oo).

σ{x) = 3a,d< x(d < a&d codes a standard model of arithmetic

&Vxί9y1(G(xί9yί9d)^3b>x(L(b9xl9yl9d9a)))&

\fb ̂  x3xί,yί(G(xί,yί,d)&L(b,xι,yud,a))&

Vxi,yi,X2,y2Vbl9b2 > x(G(xί9yί,d)&G(x29y2,d)&L(bί,xί,yί9d,a)

&L(b2,x2,y2,d,a) -> (bx < &2<-»the set coded by <Xi,.yi>

for d is recursive in the set coded by <x2>^2> for d))).

It easily follows that 2 \= σ(0(5)). Furthermore, by the definitions of G and L and
since every set of degree ^ 0 ( 5 ) is coded by an exact pair in any standard model of
arithmetic coded by d for 2[x9 oo), we conclude that if there are b, c e D such that
0[c , oo) |= σ(b) then 0[b , oo) ~ ^ [ 0 ( 5 ) , oo).

Let c e D b e given such that 2 = 2\_c9 oo). Since Q) |= 3x(σ(x)), there is a b ^ c
such that 2[c9 oo) (= σ(b). By the previous paragraph, 2[b9 oo) ~ ^ [ 0 ( 5 ) , oo).
Hence if e is chosen as in Theorem 5.6 relativized to ̂ [ 0 ( 5 ) , oo), then it follows that
c > e . D

The definability of 0 ( 5 ) over Jί seems to be crucial to any proof of Theorem 5.7.
For Martin has shown using the Axiom of Projective Determinateness that there is
a degree b such that for all c ^ b, 2[c9 oo) = 2[b9 oo) (see Yates [1970]).

5.8 Remarks. The results of this section are due to Shore [1979], [1982]. In fact,
Shore [1982] contains a proof of a stronger version of Theorem 5.7, namely, that if
2 = ®[c, oo) then c ( 3 ) = 0 ( 3 ). Jockusch and Shore [1983a] also prove that if c is
definable over Jί and 2[b9 oo) = ^ [ c , oo), then b and c have the same arithmetical
degree. Thus if we assume the Axiom of Constructibility, then 2[c9 oo) = 2[b9 oo)
implies that b and c have the same arithmetical degree.

5.9 Exercise. Show that for every d e D there is a c ^ d such that
b, oo) φ @[c, oo).






