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ABSTRACT. We classify C* near-group categories by using Vaughan Jones theory of subfactors and the Cuntz
algebra endomorphisms. Our results show that there is a sharp contrast between two essentially different
cases, integral and irrational cases. When the dimension of the unique non-invertible object is an integer,
we obtain a complete classification list, and it turns out that such categories are always group theoretical.
When it is irrational, we obtain explicit polynomial equations whose solutions completely classify the C*
near-group categories in this class.
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1. INTRODUCTION

In his celebrated paper [35], Vaughan Jones introduced the notion of index for subfactors, and opened
up a totally new subject related to various fields in mathematics and mathematical physics, such as low
dimensional topology, conformal field theory, quantum groups etc. The theory of subfactors is often
compared with the classical Galois theory of field extensions, and in fact a subfactor gives rise to tensor
categories, which play an analogous role of the Galois group. More precisely, to a subfactor N C M
of finite index and finite depth, we can associate two kinds of fusion categories, consisting of M — M
bimodules and N — N bimodules respectively, and two kinds of module categories of them consisting of
N — M bimodules and M — N bimodules.

Fusion categories may be considered as a generalization of the representation categories of finite
groups, and commonly appear in the above mentioned fields related to subfactors. Their axioms were
formulated by Etingof, Nikshych, and Ostrik [12] as follows: a fusion category over an algebraically
closed field £ is a rigid semisimple k-linear tensor category with finitely many simple objects and finite
dimensional morphism spaces such that the unit object 1 is simple. Other than the representation category
of a finite group G, a typical example of a fusion category, which may not be commutative in general, is
given by G itself. Namely, if every simple object of a fusion category C is invertible, the set of equivalence
classes of simple objects in C is identified with a finite group GG obeying the fusion rules

(1.1) gRh=gh, g¢g,heqd.

It is known that such fusion categories, called pointed categories, are parametrized by the third cohomology
group H?(G, k*) arising from the associativity constraint.

A near-group category, formally introduced by Siehler [50], is one step beyond the pointed categories,
and has only one non-invertible simple object. Let C be a near-group category with the group G of the
invertible simple objects, and let p be the unique non-invertible object in C. Then the only possible fusion
rules, apart from Eq.(1.1), are

gRp=Epg=p, geG,
m times

pop=Poerepd .

geG

Thus in the level of fusion rules, the multiplicity m of p in p ® p is the only free parameter, which we
call the multiplicity parameter of C. The based ring ZG + Zp obeying the above relations is denoted by
K (G, m) in [47]. The classification of the near-group categories having a prescribed based ring K (G, m)
is a fundamental question in the subject.

Many near-group categories appear in nature. For example, the Ising model in conformal field theory
is a near-group category with (G, m) = (Z,,0), and the representation category of the symmetric group
G3 is a near-group category with (G, m) = (Zz, 1). The Eg subfactor provides a more exotic example
with (G, m) = (Zs,2). The recent developments of the classification of subfactors [36], [1] show that
quadratic categories, slight generalization of near-group categories, are rather typical (see [20]), and it is
hard to construct subfactors neither related to (quantum) groups nor quadratic categories. So far the only
known exception is the extended Haagerup subfactor constructed in [2].
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The first systematic classification result of a class of near-group categories was obtained by Tambara-
Yamagami [52], and they completely classified the near-group categories with m = 0, now called
Tambara-Yamagami categories. They showed that such categories exist if and only if GG is abelian, and
obtained complete classification invariants in terms of G. Another extreme case was treated by Ostrik
[46], where he showed that a near-group category with trivial G exists if and only if m = 1. The proof
requires a much more sophisticated argument than one would think at first sight, and it uses braiding
in a crucial way. Since then, there have been several attempts to classify various classes of near-group
categories (see [50], [10], [23], [47], [45], [16], [39]).

Fusion categories arising from subfactors form a special class, called C* fusion categories, whose
morphism spaces are complex Banach spaces with *-structure obeying the C* condition. Throughout
this note, we focus on near-group categories satisfying this condition, which we call C* near-group
categories. It is known that every C* fusion category is uniquely realized in the category of bimodules of
the hyperfinite II; factor, and similarly in the category of endomorphisms End (M) of the hyperfinite type
II; factor M (see [25], [48]). In the latter category, invertible objects are nothing but automorphisms of
M, and one can utilize well-known results on group actions on operator algebras to analyse the structure
of C* near-group categories. In fact, the third cohomology class of a pointed category for a finite group
(G mentioned above can be identified with the Connes obstruction of a G-kernel (see [5], [34], [51]).
Moreover, the author pointed out in [28] and [32] that C* near group categories realized in End (M) can
be reconstructed from Cuntz algebra endomorphisms, which provides us a handy way to construct new
examples. The main purpose in [32] was to compute the Drinfeld centers for concrete examples of tensor
categories, and for that we deduced polynomial equations whose solutions give C* near group categories
via Cuntz algebra endomorphisms. One of the purposes of this paper is to further pursue this approach,
and to classify the C* near-group categories by using operator algebra techniques.

We summarize the main results of this paper now, which we prove in Section 3-6 (see Theorem 3.9
and Theorem 6.1).

m-++/m2+4|G|

Theorem 1.1. Let C be a C* near-group category with G, p, and m # 0 as above, and let d = 5

be the dimension of the object p. Then the following hold.
If d is rational, either of the following two cases occurs:
(1) G is abelian and m = |G| — 1.
(2) G is an extra-special 2-group of order 2! and m = 2% with a natural number a. For each
extra-special 2-group, there exist exactly 3 C* near group-categories.

If d is irrational, G is abelian and m is a multiple of |G]|.

Siehler [50, Theorem 1.2] showed, under the implicit assumption of G being abelian, that if m < |G|,
the group G is cyclic, m = |G| — 1, and |G|+ 1 is a prime power. On the other hand, Etingof-Gelaki-Ostrik
[10, Corollary 7.4] completely classified such fusion categories, and showed that there exist exactly three
categories for G = Z,, two categories for each of Z3 and Z;, and there exists a unique category for every
other cyclic group Z,_; with a prime power ¢. These results hold without the C* condition. The case (2)
was overlooked in [50] for the reason stated above.

The proof of the statement for the irrational case can be found in [45] (and in [16, Theorem 2(a)] with
an extra assumption). In the case of m = |G|, Evans-Gannon [16, Theorem 4] showed that the solutions
of the polynomial equations obtained in [32] completely classify the C* near-group categories in this
class. Moreover, they obtained a number of new solutions and computed the Drinfeld centers of the
corresponding C* near-group categories following the approach established in [31], [32]. We will deduce
the polynomial equations for the general irrational case in Section 7-8, and show that their solutions
completely classify such categories in Theorem 8.6. We will treat the special case of m = |G| in Section 9,
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and the case of m = 2|G| in Section 10. Recently an example with (G, m) = (Zs, 6) was discovered, and
the latter case also draws attention of specialists (see [19], [39], [40]). Theorem 10.19 shows that there
exist exactly two C* near group categories with (G, m) = (Zs, 6), and they are complex conjugate to
each other.

This paper is an extended version of the author’s personal note written around 2008, which roughly
corresponds to the contents in Section 3-9 in the present version. Since then there have been several new
developments about near-group categories, and some results in the original note are no longer new as
already mentioned above. Nevertheless, the author believes that it is still worth publishing the old part
because it lays the foundation for the other part of this note, and it still contains new results, for example,
the case (2) in Theorem 1.1. Section 2 and Section 10-13 are newly written in 2015.

As already mentioned above, it is a folklore result that any C* fusion category uniquely embeds into
End(M) for the hyperfinite type III; factor, and the uniqueness part is based on Popa’s classification
result for subfactors [48]. In Section 2, we clarify in what sense the uniqueness statement holds. The
author would like to thank Roberto Longo for pointing out the author’s vague understanding of the
statement before, and Luca Giorgetti for pointing out a flaw in Theorem 2.2 in the first version.

In [28], [32], we showed that a C* near-group category with m = |G| gives rise to so called a
2¢1 subfactor. Generalizing this observation, we show in Section 11 that there exists a one-to-one
correspondence between the C* near-group categories in the irrational case and a certain class of subfactors
with specific principal graphs. We show that these subfactors are self-dual under a mild assumption.

Section 12 is devoted to de-equivariantization of C* near group categories, which is a systematic
account inspired by Ostrik’s wonderful observation that the Haagerup category is related to a near-group
category with (G, m) = (Z3 x Z3,9) via de-equivariantization (see Example 12.13). As a byproduct,
we find new C* near-group categories with (G, m) = (Zy X Zy X Z3,12) missing in [16, Table 2] (see
Example 12.18).

In subsection 13, we discuss equivariantization. For that purpose, we determined the structure of the
automorphism groups of C* near-group categories in the irrational case in subsection 13.1.

The author would like thank David Evans, Terry Gannon, Pinhas Grossman, Vaughan Jones, Zhengwei
Liu, Scott Morrison, Sebastien Palcoux, David Penneys, Victor Ostrik, and Noah Snyder for stimulating
discussions and encouragement.

2. PRELIMINARIES

Our basic references are [11] for tensor categories, [18] for operator algebras and subfactors, and [3]
for the category of endomorphisms of von Neumann algebras. Every von Neumann algebra in this note is
assumed to have separable predual.

For a Hilbert space H, we denote by B(H) the set of bounded operators on H, and by U (#) the set of
unitaries on . The identity operator of H is denoted by I3, or simply by /. For a unital C*-algebra A, we
denote by U/(A) the set of unitaries in A. The unit of A is denoted by 4 or simply by I.

Let M be a properly infinite factor. Then the set of unital endomorphisms End(A/) forms a tensor
category with the monoidal product p ® o of two objects p, o0 € End(M) given by the composition p o o,
and the morphism space from p to o given by

Homgnaany(p, 0) ={T € M; Tp(zx) = o(x)T, Yo € M}.

For simplicity, we denote (p, o) = Homgyq(ar)(p, o). In this tensor category, the monoidal product 71 ® 15
of two morphisms 7; € (p;, 0;), i = 1,2, are given by

T1p1 (Tg) = 01 (TQ)Tl
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P1 P2 p1 P2
o1 g2 o1 02

By definition, two objects p, o are equivalent if and only if there exists a unitary U € U (M) satisfying
p = AdU o o, where Ad U is the inner automorphism of M given by AdU(z) = UzU'. We denote
by [p] the equivalence class of p. The self-morphism space (p, p) is nothing but the relative commutant
M N p(M)', and when this space consists of only scalars, we say that p is irreducible (or simple).

The morphism space (p, o) inherits the Banach space structure from M, and the x-operation of M
sends (p, o) to (o, p), which makes End(M) a C* tensor category (see [3, Section 1]). Moreover, if p
is irreducible, the space (p, o) is a Hilbert space with an inner product given by 7715 = (T, 1) Iy
for 71, Ty € (p, o). Throughout the paper, we assume that any functor between C* fusion categories
preserves the *-structure.

For p € End(M), its dimension d(p) is defined by [M : p(M)]ép, where [M : p(M)]p is the minimal
index of p(M) in M. We denote by Endy (M) the set of p € End(M) with finite d(p). The dimension
function Endo(M) > p — d(p) is additive with respect to the direct sum operation and multiplicative
with respect to the monoidal product operation. The tensor category End (M) is rigid in the following
sense: for any p € Endy(M ), there exist p € Endg(M), called the conjugate endomorphism of p, and
two isometries R, € (id, po p), R, € (id, p o p) satisfying

Fo(R,) = Fip(Fy) = 7o

If p is self-conjugate, either R, = R, or R, = — R, occurs. We say that p is real in the former case, and p
is pseudo-real in the latter case.

If we replace End(M) with the set of unital homomorphisms between two type III factors, the
dimension function and conjugate morphisms still make sense, and we use the same notation as above
(see [30], [3]).

Every C* fusion category is realized as a category of bimodules of the hyperfinite II; factor (see [25]),
which implies the following statement by a tensor product trick.

This is graphically expressed as

Theorem 2.1. Every C* fusion category is realized as a subcategory of Endy (M) for any hyperfinite type
III factor M.

For uniqueness, we have the following statement, which is a consequence of Popa’s classification
theorem for amenable subfactors. Recall that a monoidal functor from a strict fusion category C to another
strict fusion category D is a pair (F, L) consisting of a functor F' : C — D and natural isomorphisms

Lyq € Homp(F(p) @ F(o), F(p @ )
satisfying
Lp®U,T % (Lp,o' & [F(T)) = Lp,U®T % ([F(p) & La,T)
for any p, 0,7 € C (see [11, Definition 2.4.1]). We may and do assume F(1¢) = 1pand L1, , = L,1,. =

Ir(). When C and D are C* categories, we further assume that L, , is a unitary.

Theorem 2.2. Let M and P be hyperfinite type I1I; factors, and let C and D be C* fusion categories embedded
in End(M ) and End(P) respectively. Let (F', L) be a monoidal functor from C to D that is an equivalence of
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the two C* fusion categories C and D. Then there exists a surjective isomorphism ® : M — P and unitaries
U, € P for each object p € C satisfying

F(p)=AdU,o®opod
F(X)=U,2(X)U;, X €(p,o0),
L,, =Uyps®opo CD_I(U:)U:; = U,ooU, F'(p)(Uy).
Before proving the statement, let us recall Popa’s classification theorem in the special case of finite
depth subfactors of the hyperfinite type III; factor (see [48], [43]). Note that hyperfinite type III; factors

are mutually isomorphic due to Haagerup [24]. Let N C M be an inclusion of hyperfinite type III; factors
of finite index and finite depth, and let [ be an integer larger than the depth of the inclusion. Let

M>DN=NyDN;D---DN,

be the downward basic construction. In each step, the subfactor Ny, is uniquely determined up to inner
conjugacy in Nj. The standard invariant of N C M is determined by the following nested system of
finite dimensional von Neumann algebras:

MNN c MNN C --- C MnNnN
U U u .
C C NNN, C --- C NNN

Popa showed that there is a continuation of the downward basic construction
Ny DNj1 D Nyya Do
sothat M = M** ® Rand N = N** @ R hold, where

Mt =\/(MnDN;), N*=\/(NnN),
k=0 k=0

and R is the relative commutant of M*' in M, which is hyperfinite of type III;. Since the core inclusion
N5t C M** is completely determined by the standard invariant, it classifies N C M.

Now we recall the precise statement we need in the proof of Theorem 2.2. Assume that () C P is
another inclusion of hyperfinite type III; factors with the same standard invariant as that of N C M. Let

Po>QD>QD---DQ,;

be an arbitrary downward basic construction up to [ step. Popa’s theorem implies that if ® is an
isomorphism from M N N] onto P N Q) with ®(M N N;) = PN Q). and (N N N}) = Q N Q). for any
1 < k <, it extends to an isomorphism from M onto P mapping N onto ().

Proof of Theorem 2.2. In the following arguments, whenever we apply the functor F' to morphisms, we
need a special care because the same operator may belong to different morphism spaces. For example,
an operator X € (p, o) at the same time belongs to (p o y1, 0 o ) as it is identified with X ® I,,. On the
other hand, we have

F(X®1I,) = Loy o (F(X)® Ipu)oL,,.

Let Irr(C) be a complete system of representatives of the set of equivalence classes of irreducible
endomorphisms in C. We may assume id € Irr(C), and F'(id) = id. We choose an object

v = @ ¢eC.

&elrr(C)
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Then (M) C M is a finite depth subfactor. Since 7 is self-conjugate,

M > y(M) D ¥*(M) > ~*(M)
is a downward basic construction, and the standard invariant of the inclusion y(M) C M is determined
by

(v,7) € (1Y) < (PP
U U U

C < v < A0
In the tensor category language, this is expressed as

Ende(v)® I, ®I, C Ende(v®7)®1I, C Ende(v®v®7)
U U U .
Cl,®l,®I, C I,®Ende(y)®I, C I,®Ende(y®7)
Let
Loy = Loy Ly iy = Loy 02 F(7) (L),
or in the tensor category language,
Ly = Lygyy © (Lyy @ Iry) = Lyqey © (Ir) @ Lyy).

Then we have Ad L, ,, o F(y)? = F (%), and Ad L _ _ induces an isomorphism from (F(v°), F'(7?))

onto (F(v)?, F(7)?). We denote by &, the composition of F' restricted to (v*,7*) and Ad L’ _ _, which

is an isomorphism from (73, v%) onto (F(7)3, F()?). We claim that ®, induces an isomorphism of the
standard invariants of y(M) C M and F(y)(P) C P. Indeed, for Y € (v%,+?), we have

(Y ® I,) = (L] 5 @ Ip(y)) Ligy 1 F(Y @ L) Lygryy (L y @ L))

Y&y

= L,*Y’,),P’(YV)L%7 & IF(,Y),

Po(I, ®Y) = (IF(W) ® L:,W)Lfy,'y(ng(]’Y ®Y )Ly ey (Ip(y) ® Ly y)
— Ipiy ® L F(Y)L,,.
In the same way, for X € End¢(7), we have
Po(X @ I, ®1,)=FX)® Ip() @ Ip(y),
Co(l, @ X @ 1y) = Ip) @ F(X) @ L),
0 ®IV®X):[F(7)®IF(7)®F(X)>

which shows the claim. Thus ®, extends to an isomorphism ¢ from M onto P satisfying ®(y(M)) =
F()(P).
By construction and the above computation, we have ®(Y) = L} F(Y)L,, and ®(y(Y)) =
F(y)(®(Y)) for Y € (72,~?%), and we have ®(X) = F(X) and ®(y(X)) = F(7)(®(X)) for X € (v,7).
We choose an isometry Ve € (£, ) for each £ € Irr(C). Then we have

)= Veb(@)Vg,

Eelrr(C)

1,
(1,

Since VeV € (v,7), we get

O(VeVy) = F(VeVe) = F(Ve) F(Ve),
and ®(V;) and F'(V) are isometries with the same range projection. Thus there exists a unitary W, € U(P)
for each ¢ € Irr(C) satistying ®(V;) = F(Ve)W.
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Since ®(y(M)) = F(7)(P), there exists an isomorphism ¢ from M onto P satisfying Poy = F(y)op
On one hand,

F(Y)op(x)= > F(VoF(E)(p@)F(Ve),
£elr(C)
and on the other hand,
Pory(w)= Y P(Ve)Pol(n)®(Ve) = Y F(Vo)WePo&(a)WF(Ve)".
£elrr(C) £elr(C)

This implies F'(§) o ¢ = AdWg o ® 0 €, and in particular ¢ = Ad W4 o ® in the case with £ = id. Thus
we obtain F'(§) = AdUg o ® o £ o &~ with

Ug = We® o g o @1 (Wiy) = F(&)(Wig) We.
Let Z € (7,7%). Then Y} = ZV] belongs to (v*,7*), and F(Y1) = L,,®(Y1)L’ .. Since Y} should
be interpreted as Z o (V] ® I, ), the left-hand side is F'(Z)F'(Viq)* L . Thus we get
F(Z) = Ly y®(2)®(Via)" F(Via) = Ly 4 ®(Z2)Wig.
On the other hand, the operator Y, = Zv(V;}) belongs to (7,7?), and we have F/(Y3) = L, ,®(Y3)L? _.

1

Since Y, should be interpreted as Z o (I, ® V{}), the left hand side is F'(Z)F(v)(Via)*L? ,, and we get

F(Z) = L’YV(I)(Z)(I)( (Via)") F'(v(Via))

= Ly ®(Z)F(7)(Wia®(Via)" Wig) F () (F (Via))

= Ly, ®(2)F(7)(F(Via) Wi F'(Via)),
and

O(Z2)F(y)(F(Via) WigF (Via)) = ®(2)Wig.
Setting Z = Viq and multiplying the both sides by ®(Viq)* from left, we get
F(y)(F(Via)" WiaF (Vi) = Wi,
which implies
(2.1) E(V,) WiaF (V) = F(n)(F(Via) WiaF (Vi)
Let £, m,¢ € Irr(C), and let X € ((,£0mn). Since P(X) € (Polod !}, Polonod ), Polodt =
AdU{ o F(¢) and
Pogono® = Ad(U(E) F()(U(n))) o F(&) o Fn),
we have
F(E)(U)Ue®(X)U¢ = Ue® 0 £ 0 @~ (Uy)(X)UL € (F(Q), F(€) o F(n)).

We claim that this coincides with L, F(X). Indeed, since Z = (V,)VeXV} € (v,7°), we have
F(Z) = L, ,®(Z)F(v)(F(Via)*W3 (Vd)) Since Z should be understood as (1, ®@V;)o(Ve® )0 X oV,
the left-hand side is

(L y EE V) L2 ) (L (Ve) L ) F (X) F (V)
= Ly F () (E(Vy)) F (V) L, F(X) F (Ve)".
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The right-hand side is

Ly ®( (V) (VO R(X) (V) () (F(Via) Wi F (Vi)
= L () (W (Ve Wi F (Ve We (X)WE F (Vo) F(3) (F (Via Wi F (Vi)

id

= L)y F(7) Wia F (Vi) )W, Wig) F (Ve )We R (X)W F (Vo) F () (F (Via) " Wig F(Via))
Thus

) Wia (Vi )Wy Wig)We (X)W F(C)(F (Via) Wig F(Via))
(F'(Via)" WiaF(Via) )Wy Wig) We @ (X)W F(C) (F(Via) Wig F'(Via))
o F'(n)(F (Via) WiaF (Via) Wia) F(§) (Uy) U D (X)UZ
OWiaF (Via)" Wig F (Vi)

= F(&)(Un)Ue®(X)U,

where we used Eq.(2.1), and F'(§)(U, ) U:®(X)U¢ € (F(C), F'(§) o F'(n)). This shows that the claim holds.

For any object p € C, we choose an orthonormal basis {V (¢, p); }dlm ) of (&, p) and define a unitary
U, € U(P) by

Uy =D F(V(&p))UeB(V (£, p)i)"
&
Then it does not depend on the choice of the orthonormal basis, and coincides with the previous definition
if p € Irr(C). It is straightforward to show
F(p)=AdU,0®o0pod '

Let p,o € C,and let X € (p,0). For £, € Irr(C), we have V(§,0)! XV (n,p); € (n,€), which
vanishes if £ # 7). Since ¢ is irreducible, the restriction of ® on (¢, ) = CI, coincides with that of F' on

(€,€), and
F(V(&0)) F(X)F(V(n, p);) = 6eq®(V (£, 0)1)P(X)D(V (1, p);)-
Thus
= Y ZF (V& 0)) F(X)F(V(n,p);)F(V(n.p);)"
Enelrr(C) 1
= > > F(( (V(E0))R(X)D(V(E, ), ) F(V(E, p)))

Eelrr(C) 4,
Y D F(V(Ea))Ue(V(E0))R(X)R(V(E p))UF(V (€ p);)
EeTrr(C) 4,
— U,0(X)U.
Let ¢ € 11r(C). Then {V(€, pL&(V (1, 0),)V (G, £ © M} ps is an orthonormal basis of (¢, 9o o),

and we have
Upoo = Z ZF(V(&p)i§<v(n70)j)V(C,fon)k)
& n,CElrr(C) 4,4,k

x Uc®(V(¢,§0n)i&(V(n,0);)"V(E, p)i)-
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Here V' (&, p)i£(V(n,0);)V((, € o 1)k should be interpreted as

V(& p)i@1y5) o (le @V (n,0);) 0 V(C,Eon)k,

and we have

F(V (& p)i§(V(n,0);)V(C,Eonk)
= (Lpo F'(V(&,0)i) L o) (Le o F(E)(F(V (1, 0))) L, ) E(V(C, § o))
= L, o F'(V(& p)i) F(§)(F(V(n,0);)) Lg , F'(V(C, § o).

Note that we have already seen

L, F(V(C.E0 ) = FEU)U(V(C. £ o)L
Thus

Upoa
=Lye > > FV(Ep)FEFV(n,0))FE)U)UR(V((, & om)i)US

&, celrr(C) 4,5,k
X Uc®(V (¢, € on))*U, *F(é*)(@(v(mU)j))*U@(V(é,p)?)
=Loo > Y FV(Ep)FEEV(n,0),)Ue(V(n,0);) )UeD(V(E, p)])

Emelrr(C) ,J

Loe Y, Y _ Flp) (V(& p)i)UeR(V (€, );)

gelr(C) @

= Ly o F(p)(Us)U,.

This finishes the proof. U

Applying the above theorem to the case with M = P and C = D, we obtain the following statement.

Corollary 2.3. Let M be a hyperfinite type III; factor, let C C Endo(M) be a C* fusion category. Then up
to a natural isomorphism, every automorphism of C is induced by an automorphism ® of M in the following
sense: it is given by p — ® o p o @ for an object p and by X — ®(X) for a morphism X.

One of the main tools in this note is the Cuntz algebra O,,, and we summarize the main feature of it
here. Let n be an integer larger than 1. The Cuntz algebra O,, is the universal C*-algebra with generators
{Si}-, and relations

SZ*S] - (57;va,

i SiS; = 1.
=1

The most peculiar property of the Cuntz algebra is that it is at the same time universal and simple (see
[6]). Therefore if {7} , are noncommutative polynomials of the generators obeying the same relation
as the defining relation, then there exists a unique endomorphism ¢ € End(O,,) satistying o(.S;) = T;.
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3. BASIC INGREDIENTS

Let G be a finite group of order n. We would like to classify a C* near group category C with group
G and the multiplicity parameter m. Throughout this note, we assume that G is not trivial and m # 0
because the two cases are completely understood as we mentioned in Introduction. In this section, we
deduce basic ingredients to determine the structure of such C.

Thanks to Theorem 2.1 and Theorem 2.2, we may assume that C is a subcategory of End(M ) where M
is the hyperfinite type III; factor, and C is generated by a single irreducible endomorphism p € Endy(M)
satisfying the following fusion rules:

o)” = Play] & mlp],
geG
[ay] [ah] = [agh]a
logllp] = [pllag] = [l
where the map o : G — Aut(M) induces an injective homomorphism from G into Out(M). Since
lay][p] = [p], we can arrange « so that a; o p = p holds for all g € G. Then we have o, o oy, = oy, that
is, the map « is an action of G on M, and in particular, the pointed subcategory generated by a has

trivial third cohomology. Indeed, from the fusion rules, there exists a unitary U(g, h) € M satisfying
agoap =AdU(g,h) o ag,. On the other hand, we have

p=agoapop=AdU(g,h)oagop=AdU(g,h)op.

Since p is irreducible, the unitary U(g, ) is a scalar, and we get the claim.

We set
m + \/m2 + 4n

d=d(p) =

which is the dimension of p satisfying d* = n + md. Throughout this note, we keep using the symbols G,
m, n, d in this sense.

We fix an isometry S, € (id, p?). Since p is self-conjugate, we have
(3.1) Sip(S) =5, ee{L-1}.
When € = 1 (resp. € = —1), we say that p is a real (resp. pseudo-real) sector. Graphically, we have

Vs, —ﬂ ,
evds; :vp

We set S, = ay(S.). Then (a, p?) = CS,. Let K = (p, p?), and let {T;}™, be an orthonormal basis
of K. Then {S boea U{T;}1, satisfies the Cuntz algebra On+m relation, and in particular,

(3.2) > S, S*+ZTT*—I
geG
Weset P =3 5,5, and Q = > 71" | TiT;, which are projections.
Let C5K** be the linear span of {7}, T}, - TZST;T; T3 }. We identify K° with K£%° via the

identification of T}, T;, - - T;, with T;, ® T;, ® --- ® T;,. We identify K*** with B(K!, K*) by left
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multiplication, and K2K?** with B(K) ® B(K). For example, we denote T}, T} @ T, T = T, T;, T T .

1701 2792 27271
We abuse this notation and denote TZTJ* Qx = T,xTJ* for any x € O,,,,. With this notation, we have
(33) (0°,0%) = P CS,S; & B(K).
geG

Since (p, p o ay) C (p*, p*), we can choose a (a priori projective) unitary representation {U(g)}yec
in (p?, p?) such that (p,p o o) = CU(g). Since U(g)S. € (id, p?), we can normalize U(g) so that
U(g)Se = Se holds. Then {U(g)} is a genuine representation of the form

(3.4) U(g) = xnl9)ShSi + Uk(9),
heG

where x;, € Hom(G, T) and {Ux(9)} 4ec is a unitary representation of G in B(K). Since o, 0 p = p, we
have a,;(K) = K, and there exists a unitary representation {V'(¢)}se¢ in B(K) such that o, (7') = V' (¢)T
forall7 € Kand g € G.

For T € IC, we set

(3.5) J(T) = VdT*p(S.) € K,
(3.6) §52(T) = Vdp(T)*S. € K.
Then the Frobenius reciprocity ([30]) implies

Lemma 3.1. The maps j, and j, are anti-linear isometries of K satisfying

(3.7) i=J=c

(3.8) Viglih =1V(g), g€G,

(3.9) Uk(9)j2 = j2V(9), g€ G.

In particular, the two unitary representations Ux and V' are unitarily equivalent with an intertwining unitary
. —1

J2°J1 -

Remark 3.2. For those readers who would like to reproduce our arguments in this paper without assuming
the C* condition on near-group categories, we briefly give graphical expressions of the intertwiners
appearing so far. Let C be a pivotal near-group category whose simple objects are G U {p}. We assume
that C is strict. We first choose and fix a non-zero homomorphism S, € Hom(id, p ® p) and isomorphisms
fy € Hom(g ® p, p) for g € G. Then there exist unique isomorphisms mg,;, € Hom(g ® h, gh) for
g, h € G to make the following diagrams commutative:

I
gRh®p BRI gRp

m97h®lpl lfg.

gh®p —— p
fgh

With this family {m, 1}, rcc, we can show that the following diagrams are commutative,

Ig®mh,k

gRh®EkE —— g® gh

mg,h®]kl lmgyhk ,

gh®k —— ghk

Mgh,k
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and in consequence, we can see that the group part has trivial third cohomology.
The homomorphism S, € Hom(g, p ® p) is given by

p

Sg = (fg®]p>o(]g®se> = |Jy

p p
We choose S¥ € Hom(p ® p,id) satisfying S¥ o S, = 1, and set

Sy =y ®57) 0 (f;l ®I,) € Hom(p ® p, g).
Then we have S o S, = I,

Setting
lp
i
l”
V(g) : Hom(p,p@p) 5T = (fy@ 1) 0 (L@ T)o fi' = € Hom(p, p @ p),
P
fa
p P

we get a representation {V'(g) }4e¢ of G on Hom(p, p @ p).
The homomorphism U(g) € Hom(p, p ® g) is determined by the normalization condition

Se = (Ip ® fg) © (U(g) ® ]p) oS, =

Then they satisfy the following relation
(Lo ® mgp) o (U(g) ® In) o U(h) = U(gh),

4P l
U(h) p
p Y
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Using this, we can see that

Gog—U,®fy)oUlg)®1,)= € Hom(p @ p, p ® p)

fy

gives a representation of G. It is easy to show

(1 ® S:) © ([,0 ® fg ® ]p) © (U(g> ® Ip ® [p) © (]p ® Se) = 5g7e[p7
P Se

U(g)

fg

p p

which is essentially the right categorical trace of (1 ® f,) o (U(g) ® 1,). Choosing a basis {7;}; of
Hom(p, p ® p) and a basis {7} }", of Hom(p ® p, p) satistying T} o T; = 6, ;1,, we have

Lig, =Y _ 8, oS*—|—ZToT*

geG

Although neither j; nor j, can be defined without C* condition, they can be replaced by linear maps from
Hom(p ® p, p) to Hom(p, p ® p) given by the Frobenius reciprocity.

We get back to our original situation with a C* near-group category C realized inside End(M).

Lemma 3.3. Forany g € G, we have

(3.10) ==Y St~ ZTyl

hEG’
(3.11) p(Sg) = U(9)p(Se)U(9)".
Proof. The second statement follows from AdU(g) o p = po ay and S; = «,(S.), From Eq.(3.2), we
obtain

=2 SuSip(S0) + ST p(S) = 3 n(SeSipl +—ZTJ1

heG ‘ heG
€ ¢ .
=53 aul Z ==Y St dZT"'jl(T)
heG = heG i=1
O
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Lemma 3.4. There exists a unique linear map [ : K — K2K* such that for any T € K

(3.12) Z Shan(72(T)*) + Z an(j2 0 ji (1)) SuSy; + U(T).

heG heG

The maps j1, jo and [ satisfy the following for all T, T" € K:

(3.13) a,((T)) =UT), ge€gaG,

(3.14) fl 2 o (T * 4 2]1 T;U(T) = 0,

(3.15) %Z ]; V(R)j2(T")jo(T)*V (h)" + U(T")"UT) = (T, T") i Ty,
(3.16) [(W(T)) = iél(T)*Tﬂ}ﬁ(Tj)Ti*,

317 (1) = Y- (T,

(3.18) (jooj1)®=1.

Proof. To show that p is of the above form, we determine Pp(T") and Qp(T') separately. For Pp(T'), we
have

Z SpSEp(T Z Shap(Sip(T Z Shan(j2(T

hEG he@ hEG

\/— Z Sh]2 h)*-

heG

Since K*p(K) C (p?, p?), there exist linear maps I, : K — K for h € G and [ : K — K2K* such that

=Y IW(T)ShS + U(T).

heG
Since v, 0 p = p, we obtain [;,(T") = a(l(T)) and o, (I(T")) = I(T).
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We compute p(j1(7)) by using the definition of ji:

p(j1(T)) = Vip(T*p(S.)) = 7)) SiSuSi+ Vdp(T)* Y Tip(Se)T;
heG i=1
=Vd > an(p(T)"S.)SS; + fz > (T3, V(B)(T)) S Sy p(Se) T
he@G i=1 heG

+ ﬁlizm T,
= Zah J2 Shsh Zsh

heG heG

+ Zl VT T50 (T) T

i,7=1

This shows [, = j, 0 j; * and Eq.(3.16).
We compute p(j»(7)) by using the definition of jo:

p(j2(T)) = Vdp(p(T)*S.) IZp (T7) sh+zp (T")T3ju(T:)

heG
Z Span(T™) + Z Tip(T)"51(T3)
hGG =1
Z Shan(T*) + D Y ((T2), V(R)jz 0 ji (T))TiSu S5
heG i=1 heG
+ Z TiUT) 5 (T,
\/_ZShozh )+ V(R)jrt o a0 i (T)SuS;
heG heG
+ Z TUT) 51 (T
=1

This implies Eq.(3.17), and j5 0 j; * 0 jo = j; ' 0 jy 0 j; *, which shows Eq.(3.18).
Eq.(3.14) and (3.15) follow from p(S.)*p(T) = 0 and p(T")*p(T") = (T, T")I. O

i Vg ’L_]ll]

> ige1 Tl (T)Tj* respectively. Then Eq.(3.16) and Eq.(3.17) are equivalent to lij (jo(T)) = 47 H(I5,/(T))

Remark 3. 5 Let [V 1) € B(K) be linear maps defined by I(T) = " _ 1"(T)T; T and I(T) =
(1)
ji

and lgj)( (T)) = jl(l](-?) (T")) respectively.

Remark 3.6. The above lemma shows that every morphism between objects generated by p and o, are
noncommutative polynomials of the Cuntz algebra generators {S;},e¢ U {T;}", and their adjoints,
and the structure of C, or more precisely the 65 symbols of C, are completely determined by the tuple
(K, j1, jo, V, Uk, X, 1). To obtain this tuple from C, we made the following choices:

(1) the representative p from the class [p],
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(2) the parametrization of the group {[a,]}sec,
(3) the choice of S, from TS,.

A different choice in (1) only ends up with a unitarily equivalent tuple in an appropriate sense, and that in
(2) allows us to insert an group automorphism of GG in the variables of V| Uk, x. Replacing S, with wS,
results in replacing j; and j» with wj; and wj, respectively, which is a special case of unitary equivalence.

In terms of U(g), V' (g), and [, the relation p(ay(T")) = U(g)p(T)U(g)* is expressed as follows:

Lemma 3.7. Let the notation be as above. Then

(3.19) Uk(g)V(h) = xn(9)V (h)Uk(9),

(3.20) I(V(g)T)=U(g)l(T)U(g9)", g€ G, TeK.
Proof. We compute p(ag(T)) first:

play(T Z Sj2(V()T)*V(h)* + > V(h)jz 0 ji ' (V(9)T)SuS;
\/— heG heG
+1(V(9)T)
\/_;;GSMQ +};GV 9)j2 0 ji - (T)SLS;,
+ UV (g)T).

On the other hand,

U(9)p(T)U(g)" fo 9)Snj2(T)*V (h) Uk (9)*

heG

+ > Uk(9)V (h)jz 0 ji (T)SuSiU(9)* + Uk (9)U(T)Ux(9)*
heG

\/—ZXh 9)Snj2(T)"V (h) Uk (9)*

heG

+> 19Uk (9)V(h)ja 0 ji (T)SwS;; + Ur(9)U(T)Ux(9)",

which shows the statement. O
Corollary 3.8. For g, h € G, the following hold:

(3.21) Xn(9) = xg(h),

(3.22) an(U(g)) = xa(9)U(9).
Proof. From Lemma 3.1, we have j2V (g9)j3 = j3V (9)j2 = Uk(g). Thus Eq.(3.19) implies

72U (9) 7332V (R)js = xn(9)j2V (h) 552Uk (9)75,

and so

V(g)Ux(h) = xn(g)Ux(h)V (g),
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which shows x1(g) = x4(h). Using this, we obtain the second statement from

=" xil9)an(SeSy) + an(Ux(9))

keG

= Xk(9)SuSi + V(h)Ux(9)V (h)*
keG

=" xu-1(9) Sk S5 + xu(9) Uk (9)-
keG

We denote by A the left regular representation of G.

Theorem 3.9. When d = mH—tin ”2”2+4" is irrational, then the group G is always abelian, m is a multiple of n,

and
(3.23) P =2
heG
(3.24) vy
n

When d is rational, there exist two natural numbers s and t such thatn = st?, m = (s = 1)t, and d = st.
Moreover,

(i) Whent =1, the group G is abelian. In this case, the character xy, is trivial for allh € G and
(3.25) eV =21a U = A
(ii) Whent > 1, the group G is non-abelian. In this case, the order of Hom (G, T) is t* and

(3.26) @Xhzs @ Y.

heG x€Hom(G,T)

Let G' be the set of equivalence classes of irreducible unitary representations of G whose dimensions
are greater than 1. Then t divides dim 7 for all 7 € G, and

N
(3.27) VU= P H;”rw.

wGéT

Proof. Since we have d, . = p(Se)*p(Sy) = p(Se)*U(9)p(Se)U(g)* for g € G, we have

b = P(S) T @)0(S.) = 5 3 xula) 4+ 3 3 (T T Uelo) T (T)
heG zg 1
=—th Z(Ulc( VT3, T3) (1 (1), 51 (T5))
heG zy—l
:_ZXh + = TYUIC()
heG
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This implies
n n
(3.28) TrA\(g) = 7 > xalg) + ST Uk(9)-
heG

For x € Hom(G, T), we denote by a, and b, the multiplicities of x in €, x» and U respectively.
First, we assume that d is irrational. Then Eq.(3.28) implies d* = na, + nb,d for x € Hom(G,T).
Since d? = n + md, we obtain a, = 1 and byn = m. This implies

@ Xh = @ e
heG x€Hom(G,T)

and so G is abelian.
Assume now that d is rational. Then d is an integer. The inclusion M“ D p(M) is of finite depth,
and its index is d?/n = 1 + md/n. Since the index of a finite depth inclusion is an algebraic integer, the

number 1+md/n is indeed an integer, which we denote by s. Then d* = n+md implies n(s—1)% = sm?,
and so m is a multiple of s — 1. Letting t = m/(s — 1), we get n = st*> and d = st. Now Eq.(3.28) is of
the form

1
3.29 TrA(g) = — t'Tr U, .
(3.29) rA(g) =~ > xul9) +tTrUk(g)

heG

Assume thatt = 1. Thenn = d = sand m = s — 1. Let x € Hom(G, T). Since 0 < a, < s and
Eq.(3.28) implies 1 = ax/n + by, either a,, = 0 and b, = 1, or a,, = n and bx = 0 hold. Since x. = 1, we
get a; = s, which implies that y;, = 1 for all h € G. Thus we get Tr \(g) = 1 + Tr Ux(g), and

1aVEZ1aUc =N

Let vo(g) = V(9), v1(g9) = Ux(g), and w = j1j5. Since x;, = 1 for any h € G, Eq(3.19) implies that
vp and v; commute with each other. Moreover, since w® = 1 and v;(g) = w*vo(g)w, if we define vy (g)
by w*v;(g)w, the three representations vy, v1, and vy commute with each other. Since 1 @ v; = A for
i =0, 1,2, the group G is abelian. Indeed, since the dimension of the commutant vy(G)" of vo(G) is n — 1,
we can see that v, (G)" is the commutant of vo(G)”. Thus vy(G) N v1(G)’ coincides with the center of
vo(G)". Since vy is a faithful representation of G in vo(G)" N v1(G)’, we conclude that G is abelian.
Assume t > 1 now. Let 7 be an irreducible representation of G contained in Uy.. Then Eq.(3.29) implies
dim 7 > t, and so G is non-abelian. The rest of the statements in (ii) follow from a similar reasoning as

above. O

Remark 3.10. Under naive identification of p and p, the map 7, o j; would be graphically expressed as

p

This means that 360° rotation in this picture ends up with multiplying by e. To avoid this awkward
convention in the case of ¢ = —1, we need to properly take the pivotal structure into account to define
rotation by 120°, which should be j, o j; instead of j; 0 j;* = €j, o j;. In fact, we can deduce Eq.(3.18)
from [44, Theorem 5.1] by identifying (p, p?) with (id, p®). Since we don’t not rely on graphical calculus
at all in this paper, instead of seriously pursuing it, we give a short and general argument, based on
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Longo’s observation in [42], giving another proof of (j2 o j;)® = I here. Let ¢, be the left inverse of p
defined by ¢, () = S’ p(x)S,. Following the notation in [44], we denote by E,g") : (id, p™) — (id, p") the
restriction of d¢,. We first claim that Eé") is a unitary. Indeed, for W1, W5 € (id, p"), we have

(ESIYWh, ESYWa) = d2S:p(Wa)*S.S: p(Wh) S
Since p(W5)*S.SZp(Wh) € (p, p) is already a scalar, we have
(EgWy, B Wa) = d*6,(p(Wa)"SeS; p(Wh) = d* W56, (SeS2) Wi = (Wr, Wa).
As was already observed in [39], the n-th power of E,()n) is positive for
(D)W, W) = d"W* 6L (W) = d" (0" (WW) = d" ¢ (W) = 0.

Thus (E(n )" = id. Let @ : (p,p?) — (id, p®) be a unitary defined by ®(T') = p(T')S.. Then ¢! =
dS:p(), and

oo B o &(T) = dS: plde,(p(T)S))
— PS:p(T6,(S.)) = dS:p(TS) = Vi) plS) = 1 0 jo(T),

which proves (j2 0 j1)® = (j1 0 jo) ™3 = I again.

Remark 3.11. Our explicit formula for E,g") as above allows us to compute easily the higher Frobenius-Schur
indicators v, .(p) = tr((E,(;"))’“). Indeed, we have 15 ;(p) = €, which should be treated as a given datum.

Since E? is unitarily equivalent to j; o/j», we have v31(p) = tr(j1072). Since {S;Se }gecU{TiTjSe }1<ij<m
is an orthonormal basis of (id, p*), we have

vai(p) =d Y S:8;0,(SeSe) +d Y SiT; Ty ¢,(T/T;S.)

geG i,J
=4 51S:SIp(S,5)S. + A SITITYS: p(TiT;S.)S.
geG i,
=d Y S:S:S:U(g)p(S:)U(9)"p(Se)Se +\/_ZS*T*T*32 T,)*p(T;S.)S,
geG
=" S:S:U(g) p(Se)Se + ZS*T*]l (T j T) p(T))Se
geG
dZXg +Z I (T3 52(T2) p(13))"), Tj)
geG
dZXg +Z 1(T5), (T} 2 (T3) p(T5))")
geG
dZXg +ZT*J2 )" p(T5)5:(T5)-
geG

It is easy to evaluate these for concrete examples.

We get back to the original setting where our near-group categories live in End(M ). About p(U(g)),
we have
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Lemma 3.12.

(3.30) p(U(9)) =Y SuSiy+ d20 di Ux(9) (G20 4 )" @ U(y).
heG

Proof. Since p(U(g))Se € (ag-1, p*) there exists a complex number ¢ of modulus 1 such that p(U(g))S. =
¢Sy-1. To show that ¢ = 1, we compute both sides of S} p*(U(g))p(Se) = ¢S p(S,-1). The left-hand side
is
* * €
Sep (U(9))p(Se) = Ulg)Sep(Se) = <U(9).
On the other hand, the right-hand side is
* * * k €
cScp(Sy-1) = eS:U(g)"p(Se)U(g) = eScp(Se)U(g) = ¢ Ulg),
showing ¢ = 1. Thus we have Shg_1 = an(p(U(g))Se) = p(U(g))Sh and
NP = pU(9))ShSy = Sng15;.
heG hea
This implies that P and () commute with p(U(g)) and
p(U(9)) = Shg1 S+ Qp(U(9))Q-
heG

Note that T p(U(9))T; € (p, poay) = CU(g). This means that there exists a unitary representation U’ of
G inB(K) such that Qp(U(g))Q = U'(9)®@U (g), and it is determined by ST p(U (g))T;S. = T;U'(9)1;.
Indeed, expanding U(g) as

= Z Xn(9)ShSy, + Z UIC(Q)ququ*y

heG p,q=1
we get

SITp(U(9)) TS,

= xn(9)Si Ty p(ShSH)T; S + Z Ux(9)pgS:T; p(T, T3 )T; S,

hed p,g=1

= Y Ux(@palia 0 31 (1), TN (T, j2 0 31 (1Y),
p,g=1
and

Z 9pglJ2 0 Jy (Tp)vTiMTjaJé Ojlil(Tq»TiT;

=

(9)pajz © g1 (Tp)j2 0 1 ' (T,)*

= ja o ji Ux(9)(j2 0 ji )"
]
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Remark 3.13. We can graphically express the three unitary representations of G on K as follows:

Qg

(2051 Uk (9)(Jz 041 )T = p(U(9)TU(9)" =

This explains why they are related by the rotation map j5 o j;.

The relation
I = Z p(Sg)p(Se)" + Z p(Ti)p(T)"
implies

Lemma 3.14. Let GV be the set of irreducible representations of G contained in 'V, and let

ch, @@TFK“

TeGV a=1

be the irreducible decomposition. We choose an orthonormal basis {T¢ ,}&% ™ of K% so that

= > Z m(g)iTe 1.

FEGV a=1
Then
(3.31) =y dlm T (T2 )r (T2, e +Zl =Q®Q,
7,a,b,1,7
- . en o ra
(3.32) > UTHV (h)ja(Ty) + — > Oy Teji (T2) = 0.
i=1 ,a
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Proof. By using the Peter-Weyl theorem, we obtain

D p(S)p(Sy)" =D U(g)p(Se)p(SH)U(g)"

geG geqG

= > xu(@)xk(9)ShS;p(Se) p(Se)* SkSh
g,h,keG

+ Y > (@i Te T p(Se)p(Se) SiSi + (- )*
g,k€G m,a,i,j5

+3 > ()i (9)pgTe T p(Se)p(Se) TE,TE

9€G 7,0,1,7,0,q

n . . . .
— ﬁ Z 5Xh,XkShSk \/— Z 5Xk 7rT jl(T )Sk ( . )

h,keG k,m,a

Ta (T (T )T

> AT = 330 3 (VI RR(T) AT)SS;

m

+ 3 N V(R)ga 0 5T (T SkSkg2 0 4 (T V (h)* + > UT)I(T;)*

i=1 hed i=1

TeV(h'k)SuS; + > Y TiSuSiTy

hkEG i=1 heG

Since V is unitarily equivalent to Uy, Eq.(3.29) and Eq.(3.21) imply

TrV(h k) = Tr U,C(h‘lk)

d n
= ﬁ Tr lk - = Z Xk Xh ddh N déx}L»Xk’

gEG
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and
- * n *
ZP(TZ)/O(Tz) =P - ﬁ Z 5Xh7XkShSk
i=1 hkeG
- ZZTShS*T* + Zl
i=1 heG
ZZZ (T)Sh + ()"
i=1 heG
Since
I=> p(Se)p(Sy)* + Y p(T)p(Th)",
geqG =1
we get

Q= Z Z T;SpS, T

=1 heG
n a a b*
+dm . T T2 (T2) 1 (T2 ) T +Zz
1 — .
+—dZ UT3)V (h)ja(T3) S + ()
i=1 heG

Z S T (TS + ()",

which shows the statement.

Lemma 3.15. In terms of [(T"), Eq.(3.30) is expressed as

(3.33)
J20 41 Ux(9)(ja 0 ji )" @ Uk(g)
1 a - a * a \*
=7 Z (XgTijs 0pg) T 131 (T ) 1 ( Tb Z UTZE,)"
W,U,a,b,i,j,p,q ™,a, % ]
where

(XgTij» Opq) E :Xg )75 (h)opg(h).
heG

Proof. Since p(U(g)) is a unitary, Eq.(3.30) holds if and only if the following two hold:
= Z ShS;:ga
h
Qp(U(9))Q = j2 0 ji 'Uk(9) (G2 0 1 ')* @ Ulg)-
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The first one does not give any condition on [ as

Pp(U(9)P =>_ xu(@)Pp(SuSi)P + > Ux(9)iPp(Ti)p(T;)* P

heG ij=1

= xulg)PU(h)p(SeS:)U(h)* P

h,s,t
1 & _ . .
+ P Z Z Uk (9)ii(V (£)72(T5), V (5)J2(T3)) Ss5;
i,j=1steG
== th 9)SsS; + Z > Uk(9)i sV (" 8)aT, T3) 85S;
h,s,t ij—lstGG
= th 9)S.S; + = Z Tr Ug(t"s9)S,S;
h,s,t zy 1
=> 8,8z,
seG

For the second, we have
Qp(U(9)Q =Y _ xn(9)QU(h)p(SSHUR)'Q + > m(9)Qp(Te,Te; Q.
heG T,a,1,]

The first term above is

> (@) QU (R)p(SeS:)U (h)*Q

heG
= Z ZXQ 1.70- ) T;rlle?]* (S S*)quTabp
,0,a,b,4,7,p,g heG
1 a a . * *
=7 > XaTi 0pg) Tt (Te ) (T2, T,
m,0,a,b,1,7,0,9

The second term is

Z 7T<g)l]Qp<T:zT7gj*>Q

T,a,8,)
Z ZW 9)iV (h)ja o ji ' ( T7:)SkSpJ2 0 Jy (Tﬁ])*‘/(h)*
m,a,,7 heG
+ Z Ta )*
T,a,%,J
=Y V(2o Uklg) (20 ji )V (R) @ SuSi+ Y w(9)ul(Tr)UT7,)"
heG ™,a,1,]
= Ge o Uk(9)(j2 0 51 ")" ® xa(9)SuSi + Y m(9)l(Tr)U(T7 )",
heG T,a,1,]
where we use the fact that j; o j; has period three. Thus the statement follows. O
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4., RECONSTRUCTION

In the previous section, we showed that every information of a C* near-group category C with a finite
group G is encoded in two anti-linear isometries j;, 7, of a finite dimensional Hilbert space /C, two unitary
representations V, Ux of G on K, characters { xs }rec of G, and a linear map [ : £ — B(K, X ® K). In
this section, we deduce a necessary and sufficient condition for the tuple (I, j1, jo, V, Uk, X, [) to recover
the original C* near-group category C.

Let GG be a finite group of order n, and let m be a natural number satisfying the condition in the
conclusion of Theorem 3.9. Let O, ;.,,, be the Cuntz algebra with the canonical generators { S, } jecU{7T; } ;.
Weset P =3 5,5, Q=>" T)T;, and K = span{T;}12,. Let ¢ € {1, —1}. We choose anti-linear
isometries j; and j» of IC and unitaries representations V' and Uy in B(K) satisfying Eq.(3.7),(3.8),(3.9),(3.18).
We assume that x;, € Hom(G, T), h € G, satisfy the condition in the conclusion of Theorem 3.9 and
Eq.(3.19),(3.21). Under the above assumption, we can introduce a unitary representation U of G in O,, 1,

by
U(g) =>_ xul9)SuSi + Ux(9),

heG

and an action o of G on O, 4, by o, (S,) = Sy, and oy (T') = V(g)T for g € G and T' € K. Choosing a
linear map [ : K — B(K, K ® K) = K2K* satisfying Eq.(3.13),(3.14),(3.15), (3.16),(3.17),(3.20), and (3.33),
we can introduce a unital endomorphism p of O,,,, by

€ 1 ..
p(S) =2 S+t 7 ;m(m,

heG

o(T) = % S S0 (a(T)) + 3 el 0 47 (T)) S5, + UT).

heG heG

Indeed, we first define p on the canonical generators {.S,, T; } of the Cuntz algebra O, ,,,,. Then {p(S,), p(T;)}
are isometries with mutual orthogonal ranges, and so

m

E =" p(Sy)p(Se)" + > p(T)p(T)*

geG =1

is a projection. The proof of Lemma 3.15 in the case of g = 0 implies PEP = P and QEQ = (), which
shows that £ = I. Thus p extends to a unital endomorphism of O,,,,, and the proof of Lemma 3.14
implies that Eq.(3.32) holds (note that Eq.(3.31) is a special case of Eq.(3.33)). Now it is easy to show
Eq.(3.5), Eq.(3.6), oy o p = p, and Ad U(g) o p = p o . The proof of Lemma 3.15 shows that Eq.(3.30)
holds.

Lemma 4.1. Let X be an isometry of O, . If S¥p*(X)S. = X and T} p*(X)T; = p(X) for all i, then
P(X) = Shan(X)S; + > Tip(X)T;.
heG i=1
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Proof. Applying oy, to S;p*(X)S. = X, we get S} p*(X)S, = ay(X). Since I = p*(X)*p*(X), we have
I = S;p*(X)*p*(X)S, too, and

I=Y"S:p*(X) SS;p*(X)S, +Zs* 2(X )T p*(X)S,

heG
= S5 (X)"S,S; 0% (X)Sg+ Y Syp’(X)"SuSip*(X)S,
heG\{g}
+ZS* 2(X) T 02 (X)S,
=T+ >  Sip(X)SuSip*(X S+ZS*2 T,T p*(X)S,,.
heG\{g}

Thus S;p*(X)S, = 0for g # h and T;p*(X)S, = 0. In a similar way, we have S,p*(X)7; = 0 and
T3 p*(X)T; = 0 for j # i. These relations imply Pp*(X)Q = Qp*(X)P = 0 and

p(X) = (P+Q)p*(X)(P + Q) = Pp"(X)P + Qp*(X)Q

= Swan(X)S; + Y Tip(X)T,
=1

heG

Lemma 4.2. For g, h € G, the equation S; p*(S,)Sh = Sy holds.

Proof. 1t suffices to show the statements for & = e because the others follow from them by applying «;, to

them.
* 2 * *
Se e d ZS Sk \/— ZS ))Se
keG
€ . % /-
= =D SURA(SIU(K)*Se + — Zh(Ti) p(jr(T3))Se
keG i=1
1 1 &
— EZSQ+L_ZZSB Se
keG =1

Lemma 4.3.
Z ShOéh S + Z T, p
heG

Proof. We first show the statement for g = e. Thanks to the above two lemmas, it suffices to show
Qp*(Se)Q = >, Tip(Se)T; . Instead of the orthogonal basis {T;}7",, we use {7}, } sometimes. By the
definition of p, we have

=§ZQp<

geG

Z T)Q.

S\
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The first term is

€ * € a a * *
5D Uc@)p(S)Uc() = =D > 700 (@pTriT7, p(S)T;, Ty,
geG 9€G m,0,a,b,i,7,p,q9
S Te.T° *p(S)T T

d dim mit g L% R X
,a,b,1,j

a a b b *
Tﬂ,i.]l(T )Tﬂ'jTﬂ’L :

1
N d\/c_l m?b,i,j dim

The second term is

Secondterm—\/_Z{\/—ZOéh J20J1 ( i))Shan(j2 0 j1(Ti)* )"‘Z(Ti)l(jl(Ti))}

heG

= - ZZTjShT; + ﬁ ;Z(T)l(ﬁ(T))

j=1 heG

Using Eq.(3.16),(3.31), we have

1 — 1
— > UD)GU(T)) = —= > UT)UT) T, T, (T,)T;
vd =1 Vd ip,q
1 _ .
— \_fd Z T,T,5\(T,)T;
. b \xb * . *
A T g T T T

| 1 ) ,
ZTdZTqujl(Tq>Tp \/— Z meJl(T )7t (T2 )Tz
p,q

1 ne 1 *
z—g T, T,7,(T,)T; — T i (T TP T
\/ZZ - p q]l( Q) P d\/aﬂ,abijdimﬂ w,z]l( 7'1',_]) m,j i
Thus we obtain the statement for g = e. The general statement follows from this and Eq.(3.30). ([l

Lemma 4.4. The following conditions are equivalent:
(1) Sy € (ay, p?) forallg € G.
(2) Stp(l(T))S. = (1 —2n/d*)T forall T € K.
(3) Let lg) : K — K be as in Remark 3.5. Then

(4.1) 5D BT D)RT) = (1= )T, Tek.
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Proof. 1t is easy to show that (2) and (3) are equivalent. Thanks to the above lemmas, it suffices to show
that (2) is equivalent to S*p?(T)S. = T. Indeed,

Sep*(T)S.

heG

= % S S p(an(Seia (T)))Se + 3 52 plan(ia 0 7 (T)S.52))S. + S:p(U(T)) S,
heG

The first term is

The second term is

> StUR)p(ha 0 ji H(T)SeSE)U (B)* S,

heG

. . . ne o . » n .
=nS:p(ja 0 ji (T)SeSE)Se = d—\/EJS o jrHT) p(Se) = —=ij1"

i (T)"p(Se)
= ET'

Thus the statement is proved.

O
Lemma 4.5. Assume that Eq.(4.1) holds. Then the following conditions are equivalent:
(1) K= (p,p).

(2) Forany T, T',T" € K, the equality p(T")*p*(T)T" = p(T")*T"p(T) holds.

Proof. We only show that (2) implies (1). Assume that (2) holds. Thanks to the above lemmas, it suffices
to show p*(T)T" = T'p(T). For this, it suffices to show p(Sy)*p*(T)T" = p(S;)T"p(T) for we have
p(P) + p(Q) = I. Since we have

p(S)T"p(T) = Ulg)p(SH)U(9) T p(T),
we only take care of the case with g = e.
For p(S.)*p?(T)T", we have

p(S.) P T)T = pl(S:p(THT = %puz(T»*T'

1 1
= —= > (T, V(h)jz 0 ji " 0 ja(T)) kS + —=1(j2(T))"T".
Vd heG< S A5, Vd 2(T)
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For p(S.)*T"p(T'), we have

1
S )T p(T) = —=51(T") p(T
p(Se)"T'p(T) \/311( )" p(T)
1
(T")SySE + —=51 (T I(T
\/—;EG h)jz 0 g7 (T), j1(T"))SuSh, \/Eh( ) UT)
1
g (T",V(h SpSy 4+ —= 51 (T*I(T).
\/—heG (h)j1 0 j2 0 j1(T))ShS}, \/Eﬁ( ) U(T)
Now the statement follows from Eq.(3.17),(3.18). O

Theorem 4.6. The endomorphism p satisfies

2(2) =Y Syay(x)S; + Z Tip(2)T,

geG

if and only if Eq.(4.1) and the following three equations hold for allh,k € G and T, T',T" € K:

(4.2) Z T"U(T, )" 32(T")T5)
= (1", 1T - %l > (e AN U,
(4.3) UT") g2 0 gy (T")j2 0 1 (T) = ja 0 gy (T UT)T),
w4 T TUT) = ST YT T
S S Wt 0 7 ) T T (T e T

hGG i=1
Proof. Tt suffices to show that p(T"*p(T))T" = p(T")*T"p(T) is equivalent to the above three. We
compute p(T")*p*(T)T" first:
p(T" p(DNT' = SV (g0 57 (1), T)p(SuSI)T' + p(T" UT))T"
hea

The first term is
> (V(h)ja o ji (1), T")U (h)p(SeS:)U (h) T’

heG
= <5 2 (Vg0 i (1), T )l Su (Ue() T')
h,keG
dZZ h)ja o ji (T), T"YU (h)T;j1 (T) 1 (U (R)*T")*.
heG i=1
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The second term is

m

(T UTNT =S p(T" I(T)T) ()T

i=1

=" (T V(h)ja 0 i (T) p(T" L (T)T3) Su S, + Zp(T”*l(T)ﬂ)l(ﬂ)*T’

i=1 heG

=D Grody V)T, T)V (h)js 0 i (T U(T)T;) Su S,

i=1 heG

ZZSm T I(T)T;)* V(k)*l(ﬂ)*T’+il(T”*l(T)T I(T,

i=1 keG

=N V() je o i (T UT )i 0 Gy (V(R)T))ShS;
heG

m

ZZSM (T UT)T) UT)V (k) T'V (k) + > WT"UT)T)UT)T".

i=1 keG =1

On the other hand,

p(T")T'p(T) = > (T V(k)jz 0 ji H(T")) SiSip(T) + 1(T") T p(T)

keG

\/_Z (T",V(k)ja 0 gy H(T")) Skjo (T)*V (k)

keG
+ Y UT")' TV (h)ja 0 jy H(T)ShSyy + UT") T'UT).

hec
Therefore we get
(4.5) (V(k)jz0 i (T"),T")j2(T)
= Z TV (k)(T}) 2 (T I(T)T;)
+ - ;xk NI,V (h)jz 0 g (T))V (k)51 (Ukc (h)'T"),
(4.6) UT"YT'V (B)jz 0 i (T) = V(R)jz o i (T UT)j1 0 j3  (V(R)T")),

and Eq.(4.4). Thanks to Eq.(3.13), we have

V(R)UT")" = UT")(V(h)" @ V(h)"),

and Eq.(4.6) is equivalent to Eq.(4.3) if 7" is replaced with V' (h)j, o 57 *(1"). Since

V()" j1(Ux(h)'T") = 1 (V (k) Uk (h)*T") = ji(x(h)Uic (h)*V (k)" T"),
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if T" is replaced with V' (k)T", Eq.(4.5) is equivalent to
(o 0 g (T"), T') jo(T)

- ZT/* BT UT)T) + DT V) 3 TN UT)

If we replace 7" with j; o j, ' (T") and T with j; '(T), this is equivalent to
<T// T/>T

= EZT, i)J2(J1 0 Jy (Tﬂ)*l(ﬂé(T))Ti)

+ Z jro gz (T"),V(M)ja o ji " o s (T)) (Ui (R)'T")

heG
—c Z T T 5o (T")T;)
+ Z@i 0 jo (T"),V(R)j1 0 ja 0 1 (T)) 1 (Ui (h)*T")
heG
- ez T PR + & S Uy T, (D)3 U (BT,
heG
where we use Eq.(3.17),(3.18). Thus we are done. O

Remark 4.7. Replacing T" with jo(T") and T" with j;(T"), we see that in Eq.(4.4) is equivalent to

(4.7) T"UT"UT) =Y 12TV UT) 4o (T:)) T I(T;)
=1

Fay ST U Wi (T U (W T (T (1 ()

heqG i=1

Likewise, replacing 7" with j; (7') in Eq.(4.4), it is equivalent to

(4.8) i Ty TUT) TiT5(T) T = i (T U(TY T, T, (T) (T T
+3 ZZ T U () Toa () 2 (Ui (h)* T
hEG i=1

Definition 4.8. We say thata tuple (IC, j1, j2, V, Uk, X, ) is admissible if it satisfies Eq.(3.7),(3.8),(3.9),(3.18),

the condition in the conclusion of Theorem 3.9, and Eq.(3.19),(3.21),(3.13),(3.14),(3.15), (3.16),(3.17),(3.20),(3.33),(4.1),(4.2)
(4.3),(4.4). We say that two tuples (IC, j1, j2, V, Uk, 1) and (K', 1, j5, V', U, ') are equivalent if there exist

a unitary W : K — K’ and a group automorphism ¢ € Aut(G) satisfying j|W = Wiy, j5W = Wi,

Uk ()W = WUk(e(9)), V()W = WV ((9)), xi(9) = Xem (#(9)), and

VW)W = (W @ W)(T), TeK.

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 253



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

We have seen that starting from an admissible tuple (KC, j1, jo, V, Uk, X, 1), we can construct the Cuntz
algebra endomorphism p € End(O,, ) and the G-action « satisfying relevant properties. As in [28], we
can choose an appropriate representation of O,,,, so that p and a extend to the weak closure of O, ,
which is a hyperfinite type III) factor, without changing morphism spaces (see Appendix and [28]). This
finishes the reconstruction process from (I, ji, jo, V, Uk, X, 1) to C.

Let C and D be C* near-group categories with finite group G and a multiplicity parameter m real-
ized in Endy (M), which give rise to two admissible tuples (K, j1, jo, V, Uk, 1) and (K', j1, j5, V', U, l')
respectively. In view of Theorem 2.2 and Remark 3.6, we see that the two C* near-group categories C and
D are equivalent if and only if the two corresponding tuples are equivalent. In conclusion, we get the
following result.

Theorem 4.9. The association C — (K, j1, j2, V, Uk, 1) gives a one-to-one correspondence between the set
of equivalence classes of C* near-group categories with finite group G and a multiplicity parameter m, and
the set of equivalence classes of admissible tuples.

5. THE casE oF m = |G| — 1

In this section, we briefly give an account of the classification of near-group categories with a finite
group G and the multiplicity parameter m = |G| — 1. We have seen in Theorem 3.9 that G is abelian under
the C* condition. In fact, we have the following classification result without this additional assumption.

A fusion category is said to be group theoretical if it is categorically Morita equivalent to a pointed
category (see [11, Definition 9.7.1]).

Theorem 5.1. Let C be a near group category with a finite group G' and the multiplicity parameter m =
|G| — 1. Then the group G is cyclic and |G| + 1 is a prime power q. If G = Zs, there are three such categories,
if G = Zs or G = Z, there are two such categories, and if G = Z,_; in the other cases, there is one such
category. All these fusion categories are group theoretical.

Example 5.2. For G = Z,, we have dim K = 1, and Eq.(3.31) implies [ = 0. We may choose a basis {T'}
of K so that j;(T') = T, and so € = 1. In this case, the only choices of j, are jo(T) = (T with ¢ = 1. All
the conditions in Definition 4.8 are easy to verify in this case, and there are certainly three near-group
categories. This example was already discussed in [28].

For the proof of the above theorem, Siehler [50, Theorem 1.2] was the first to show that G is cyclic and
|G|+ 1 is a prime power under an additional assumption of GG being abelian (though this assumption is not
explicitly written in [50, Theorem 1.2]). Etingof-Gelaki-Ostrik [10, Corollary 7.4] showed the statement
under the assumption that G is cyclic. Recently Nikshych-Ostrik [45] showed that G is cyclic and the
classification was completed.

Let IF, be the finite field of order g, and let F* be its multiplicative group. We regard I, as an additive
group on which [F; acts by multiplication. Etingof-Gelaki-Ostrik reduced the classification to a counting

argument of the group H*(F,, T)Fs of IF X-invariant cohomology classes in H?(F, T). We reproduce their
reduction argument from the view point of operator algebras now. The following argument was developed
in [29], [33, Theorem 9.8,(i)], which could serve as an introduction to more complicated arguments in the
next section.

Let N = p(M), which is an irreducible subfactor of index d? = |G|?. Since a, o p = p, the fixed point
algebra

MY = {z € M; a,(z) =z, Vg € G},

is an intermediate subfactor between M and N with

[M : M) = [MY: N]=|G]|.
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Lett: MY < M and k : N < MY be inclusion maps. Then we have the decomposition p = ¢ o x o pg,
where py is p regarded as an isomorphism from M onto N. Let a, = pg © ag © py ! which is an outer
action of G on N, and let N¢ be the fixed point algebra

N ={z € N; ay(r) = =, Vg € G}.

/

Since AdU(g) o p = p o oy, we have o (y) = AdU(g)(y) for any y € N, and the von Neumann algebra
generated by NV and {U(g) },e¢ is identified with the crossed product N <, G. Eq.(3.22) and Theorem
3.9 show a,(U(h)) = U(h) for any g, h € G, and we get N x, G C M. Since

(M : N] = |G| =[N %o G : N,

we get MY = N %, G.

Since the image of pg o ¢ is N, the duality between the fixed point inclusion N¢ C N and the crossed
product inclusion N C N %, G implies that the endomorphism x o py o ¢ € Endy(M%) contains an
automorphism, which we denote § € Aut(M ). Then the Frobenius reciprocity implies [kp0] = [07], and
we get

(o] = [erpo] = [107].

Since (3 is abelian, there exists an outer action 3 : G — Aut(ME) of the dual group G of G such that

M = M€ x5 G and « is the dual action of 3. Thus

@] = EPIB-

xe@
We denote by L the group generated by [0] and [3,] in Out(M).

Lemma 5.3. Let the notation be as above.

(1) For x1, X2, 71,72 € G, we have [810B,] = [+ 008:,] if and only if x; = 7; fori =1,2.
) L = [Be] U [Bal0][8¢]-

Proof. Since p is irreducible, we have

1 = dim(p, p) = dim (07, 07) = dim (@6, 02) = > _ (8,0, 0, 3;),
X,TGG
which shows (1).
Since p is self-conjugate, we [107] = [10~'7]. This implies that [0~!] is contained in [z.07t], and it is an
element in [84][0][5¢]. Let Ly be the right-hand side of (2). The fusion rules of the category implies

> lagl + (1G] = Do) = [0°] = [6ubr] = Y _[165,07).

geG xeé

This means that [0, 0] belongs to L;, which shows that L, is already a group. Therefore L = L,. O

In what follows, we identify G with [B¢] for simplicity. The above double coset decomposition implies
that L acting on L/ Gisa sharply 2-transitive permutation group with the abelian point stabilizer G,
which allows us to identify the pair (L, G) with (F, x [Fx, ) (see [26, Chapter XII, §9]). The embedding
L C Out(L) carries a cohomology class in w € H3(L, T) whose restriction to G is trivial as it comes
from the genuine group action 3. Such a class w is identified with a class in H3(F,, T)qu by restriction
thanks to the Lyndon-Hochschild-Serre spectral sequence.

Now we reverse the above process. Assume that we are given a cohomology class w € H?(F, x Fx,T)
whose restriction to F is trivial. Let P be a hyperfinite type III; factor. Then there exists an embedding
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of F, x [ into Out(P) carrying the class w, which is unique up to conjugacy in Out(P) thanks to
Theorem 2.2 (or see [37]). We choose a lifting v : F, x F,' — Aut(P) of it. Since the restriction of w to
IFqX is trivial, we may assume that  restricted to IFqX is an action, which we denote by /3. Since IF; is cyclic,
the second cohomology H?*(FF, T) is trivial, and such § is unique on IF* up to 1-cocycle perturbation.
We denote by G the dual group of F*. Let M = P x5 F, and let ¢ : P < M be the inclusion map. We
choose an arbitrary h € F, 3 F* \ FX, and set p = 1,7, whose equivalence class does not depend on the
choice of h. The same computation as above shows that p is irreducible and

[0°] =Y _[Be + (a = 2)p,

geG

where (3 is the dual action of 3. Therefore we get a C* near-group category with the group G = Z4—1 and
the multiplicity parameter m = ¢ — 2.

6. THE NONCOMMUTATIVE CASE

In this section, we classify C* near group categories with noncommutative G. In this case, Theorem
3.9 implies that d is an integer and there exist natural numbers s, ¢ with ¢ > 1 satisfying n = |G| = st?,
m = (s —1)t, and d = st, where we use the same notation as in Section 3. Let G be the set of equivalence
classes of unitary representations of ¢, and let Gt =G \ Hom(G, T). Then Theorem 3.9 implies that ¢
divides dim 7 for every 7 € G, and # Hom(G, T) = 2. We denote by [G, G] the commutator subgroup
of G. Since Hom(G, T) is identified with the dual group of G/[G, G|, we have #|G, G| = s.

Let p be a prime number. A p-group G is said to be extra-special if Z(G) = |G, G| = Z,, where Z(G)
is the center of Gi. Our goal in this section is to prove the following theorem.

Theorem 6.1. Let G' be a noncommutative finite group. Then a C* near-group category with G exists if and
only if s = 2 and G is an extra-special 2-group. In particulart is a power of 2, n = |G| = 2%, m = t, and
d = 2t. For each extra-special 2-group, there exist exactly three different C* near-group categories.

Remark 6.2. As we will see in the proof below, the three fusion categories for a given extra-special 2-group
G are distinguished by the third Frobenius-Schur indicator v (p).

Example 6.3. The representation category of the bicrossed product Hopf algebra arising from the
symmetric group &4 = &, - Z/4Z is an example of such a fusion category with the dihedral group
GG = Dsg of order 8 (see [33, Theorem 14.40,II]).

We will prove Theorem 6.1 in several steps. Assume that C is a C* near group category with a
noncommutative GG and we use the same notation as in Section 3 and Theorem 3.9. Let N = p(M),
which is an irreducible subfactor of index d* = s?t2. Let o/ be the outer action of G on N defined by
ay = poagyo p~t. Since po oy, = Ad U(g) o p, we can identify the von Neumann algebra generated by N
and U(G) with the crossed product N x, G. We denote by M¢ the fixed point subalgebra of M under
the G-action «, that is,

MC ={x € M; a,(z) ==, Yg € G}.
Since a, o p = p, the fixed point algebra M© is an intermediate subfactor between M and N with index

[M : M) = |G| = st
Lemma 6.4. Let the notation be as above. Then N X G = M!S and N x, [G,G] = MC.

Proof. Let i1 : N Xy G < M, 15 : N X [G,G] — N X G,and 13 : N < N X, [G, G] be the inclusion
maps. Then we have p = ¢11913p0, Where pg is p regarded as an isomorphism from M onto N. We have

d(t1) = /s, d(12) = t, d(13) = /.
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Since N %,/ [G,G] C N % G is a crossed product inclusion by a G/[G : G]-action, and G/[G, G]
is an abelian group of order ¢2, the endomorphism ¢,7; is decomposed into ¢?> automorphisms. Since
[p?] = [pp] contains [1;(1273)71], if 7y is an automorphism contained in t573, then 11777 is contained in p?.
Since d(11777) = s < d(p) and

[0?] = > lag] + (s = 1)t[o],
geqG
the endomorphism 1777 is decomposed into automorphisms, and it is the case for ¢11975 77 as well. Since

d(11t2) = /st = V#G, we get
[t1tal2 1] = Z[%]'

geG
This means that N x [G, G] coincides with the fixed point algebra M.
Since p is self-conjugate, we can show MI%C = N %, G too switching the roles of the crossed
products and fixed point algebras. U

Let N%¢] be the fixed point algebra
NIGC = {z € N; o (z) =z, Vg € [G,G]}.

Since po(M1%Cl) = NIGCl the image of pyt; is noting but NI%¢l. By the duality between the crossed
product subfactor N C N % [G,G] = M and the fixed point algebra subfactor NI%¢ C N, the
homomorphism ¢3p0t; from M!%¢l to M contains an isomorphism from M1 onto M¢, say ¢, and
we have 13p9 = @7 by the Frobenius reciprocity. Thus

(6.1) 0] = [ttapt] = [up™' 5 7).

Let m be the set of equivalence classes of unitary representations of [, G|. Then we have the
following irreducible decomposition

(6.2) mhuwl= @ (8] P dimn(s],
T€Hom(G,T) reGi
(6.3) [T14] @ dim o[v,].
JE[G G]

Lemma 6.5. With the above notation, the following hold.

(1) the homomorphism (3,7, is u’reduczblefor allm € G ando € [G Gl.

) form 7' € Gando, o’ € [G (], the two homomorphisms B¢, and (.47, are equivalent if and
onlyifm =7" ando = o’.
(3) form, 7 € G, we have dim (1107 B, 110 Brr) = O .
(4) foro, o’ € |G, G|, we have dim(t1L297,, t1L29Ysr) = 007
Proof. Since p is irreducible,
1 = dim(e1eat1, titapir) = dim(zz Tieitaep, ity
= Z Z dim 7 dim o dim(5r¢, ¥ ),
WGG Ue@

which shows that [3,;¢] = [¢7,] if and only if 7 = 1 and o = 1. Since the right-hand side of
dim (8070, O 9Yor) = A (B B, 9Y6175);
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is1if r = 7’ and 0 = ¢, and it is 0 otherwise, we obtain (1) and (2). (3) and (4) follow from (1),(2) and
the Frobenius reciprocity. U
—
Let [G,G] = [G,G]\ {1}
_—t .
Lemma 6.6. There exists a unique bijection ® : [G,G] — G such that (112075 = [L19 " Ba(o) ¥
—1
and dim ®(o) = tdimo. Moreover, there exists V(o) € Hom([G,G],T) for o € [G,G] satisfying
[L2076] = w0y~ Bao) -
Proof. On one hand, we have
(0] = > _lag] + (s = )t[],
geG
and on the other hand,

P’ = lnpting ' Bn) = ) dimoluepree” B ).

c€[G,G]

Since

iaoe mT] = 3 o),

geG
for o # 1, we have [111507,9 175 17] = t dim o[p]. Thus for o # 1,
tdim o = dim(e100907.0 T2 11, p) = dim(t1190Ye, L1913 T1L1L20)
= Z dim 7 dim (109975, L1~ Brp).
el
Thanks to Lemma 6.5(3),(4), there exists unique 7, which we call ®(¢) such that [t1907,] = [t107! Br¢]

and dim 7 = ¢t dim 0. Moreover ® is an injection. Since

> (dimo)*=[[G,G]| - 1=s—1,
O'E[E:E]T
we have
Z (dim ®(0))? = t*(s — 1) = #G — # Hom(G, T) = Z (dim 7)?,

UE[E,\G]Jr reGt

and we see that ® is a surjection. Since
1 = dim(t125070, 119 By ) = dim (207, 1119~ Bao)#)
= Y dimo’ dim(eapv0, Y0~ Bae) ),

—

o'€[G,G]

there exists a unique o’ € Hom([G, G], T) such that [.297,] = [V Ba(0)¢)- O
Lemma 6.7. The commutator subgroup |G, G| is abelian, and dim 7 =t for all 7w € G

Proof. Suppose that [G, G] is non-abelian. Then there exists an irreducible representation o € [G/,E]
such that ¢ ® 7 contains a non-trivial irreducible representation y. Since [1207,] = [Yw ()9~ Ba(o)¢), the
endomorphism 7, is contained in ¢! B3(57Pe(0) > and there exists p' € G such that V) = [ ' Bl
However, this implies [¢,] = [8,/¢], which contradicts Lemma 6.5 because 1 # 1. O
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We recall a well-known fact that the dimension of any irreducible projective representation of a finite
group does not exceed the square root of the order of the group (see [27, Problem 11.7]).

Lemma 6.8. The commutator subgroup |G, G| coincides with the center Z(G) of G.

i
Proof. Let o € |G, G] . Since [1207,] = [Yu(0)¢ ™ Ba(o)¥] and 1573 is decomposed into ¢* automorphisms,
the endomorphism 4 (o) f5,y contains t? automorphisms. Since dim ® (o) = ¢, this means that

TRT = @ T,

T€Hom(G,T)

forallm € Gi. Let g € [G, G]. Then nr(g) is a scalar forall m € G because 7(g) = 1 forall7 € Hom(G, T).
This implies g € Z(G), and |G, G| C Z(G).

Since m € G can be regarded as an irreducible projective representation of G/Z(G), the dimension of
7 does not exceed the square root of the order of G/Z(G). Since dim 7 = ¢, we have t* < #G/Z(G) <
#G/|G,G) =t* and Z(G) = |G, G]. O

P S

Recall that Z(G) = Z(G) \ {1}.

—

T
Lemma 6.9. For each character o € Z(G) , the induced representation Indg(G)a is decomposed as

t
——f—
Indg(c)a E7m, D DT,
—1
where 7, is an irreducible representation of dimensiont. For 01,09 € Z(G) with oy # 09, the corresponding

two induced representations are mutually disjoint. Moreover, we have Gt = {ms} ZG and
e

t

A

~ 7 N J—
Ty ® Toy = To109 b---DB o109 for 01 ?A g9,

Te T =1, 7€ Hom(G,T),
o ® T = @ T7
T€Hom(G,T)
7T_o- = Ta.

Proof. For m € Gland g € Z(G) = |G, G, we have seen in the proof of the previous lemma that 7(g)

is a scalar. Thus the restriction of 7 to Z(G) is decomposed as t copies of some o € Z(G). If o were
trivial, the representation m would reduce to a representation of G/Z(G) = G/|G, G]. Since dim 7 > 1

—

T
and G/|G, G] is abelian, this is impossible, and 0 € Z(G) . By the Frobenius reciprocity, the induced
representation Indg(G)a contains ¢ copies of 7. Since #G/Z(G) = t* and dim m = ¢, we obtain

t

——N—
Indg(G)J%“W@---GBW.

This means that 7 € G is completely determined by its restriction to Z(G) and the other statements
follow. 0

Lemma 6.10. The group Z(G) is cyclic, and s + 1 is a prime power.
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Proof. Since t = dim 7, Theorem 3.9 implies that the representation (V, ) has the following irreducible
decomposition:

V.K) = @ (1K),

1

ceZ(@)

Eq.(3.8) implies 71 C, = 5.
Thanks to Eq.(3.19), the operator Uy (h) for h € G is an intertwiner between V' and x;, ® V. Since
the above lemma shows that y; ® 7, is equivalent to 7, we have Ux(h)KC, = K,. Thus Eq.(3.9) implies

1
that there exists a permutation 6 of order two of Z(G) such that j,K, = Ky (o). Eq.(3.18) implies

060@) =0, o€ Z(G).
Eq.(3.15) shows that if 7' € K, is an isometry, we have
(6.4) Iy, + UT)UT) = Q.
Thus if s = 2, we have [(T") = 0. In this case Z(G) = Zs and the statement holds. Assume s # 2 now.
Then [(T') # 0 forany T' € K, \ {0}. Eq(3.13) and Eq.(3.20) implies
I(K,) C & KKk

wweZ(G) o=0(v)o)

Eq.(3.17) implies 0(0(v)0 (1)) = 0(vz)0(iz). Thus [50, Theorem 6.1] implies that Z(G) is cyclic, and s + 1
is a prime power. U

Lemma 6.11. The number s is a prime and G/Z(G) is an elementary abelian s-group. In consequence, the
group G is an extra-special s-group.

Proof. Since dim 7 = ¢t and #G/Z(G) = %, if we regard 7, for o € Z/(\G)Jr as a projective representation
of G/Z(G), it is faithful. Indeed, if it were not the case, there would be a normal subgroup H of G strictly
containing Z(G) such that we can regard 7, as an irreducible projective representation of G/ H. However,
this is impossible because t = dim 7, cannot exceed the square root of the order of G/H.

For each g € G/Z(G), we choose a lift §, and set w(g, h) = ghg 'h~' € Z(G) for g, h € G/Z(G).
Thenw : (G/Z(G))? — Z(Q) is an anti-symmetric bihomomorphism, which is independent of the choice
of the lifts. Let p be a prime dividing ¢. We choose g € G/Z(G) whose order is p. Assume that s is

not equal to p. Then there exists a character o € Z(G) such that o” # 1. Since o”(w(g, h)) = 1 for all
h € G/Z(G), the matrix 7»(g) is a scalar. However, this would imply g = e, which is contradiction,
and we obtain s = p. Since this is the case for all prime p dividing ¢, we see that G/Z(G) is a p-group.

—_—

T
If there existed g € G/Z(G) satistying g? # e, for any 0 € Z(G) and h € G/Z(G), we would have
o(w(g?P,h)) =1, and w(g?, h) = e. This means g* € Z(G), and is again contradiction. Thus we conclude
that G/Z(G) is an elementary abelian p-group. O

Lemma 6.12. The number s is 2, and jo7j; is a scalar. In particular, the group G is an extra-special 2-group.

o~

Proof. We choose an orthonormal basis {T(0);},_; of K, for 0 € Z(G) , and express 7, as

To(g) = Z 7o (9)i T (0)iT (o)}
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Since j2V'(g)j3 = Uk(g), we have the irreducible decomposition of Uy as

Uk(g) = Z 7o (9)ijJ2(T(0)i)j2(T'(0);)".

oeZ(C)

Since x;, ® 7, = 7,, Eq.(3.33) takes the following form now:

J251Ux(9)71 73 @ Ux(g)
=— Z Xo(M)To(R)ij70 (h)pajo T (0):T(0)ds @ 12T (0);T (o) d3 41

h,0,%,5,p,q

+ Z 7TJ(g)ijl(jo(U)i)l(jQT(a)j)*v

0ij
which is equivalent to

7152V (9)J357 ® V(g)

LS W BT (0)T(0); @ g o), T ()31

st =
h,0,%,5,p,q

+ Z 7o (9)ij (G2 ® 32)l(J2T(0):)l(j2T(0);)" (2 ® ja2)*-

o,1)

This and Lemma 6.9 imply

> jiiama(9)d3i @ 7e(g)
= g Z Xg(h)ﬂ'a(h)ij’ﬂ'g(h)qu(O‘)iT(O')p ® j2]1j2T(g)jT(g)q]2j1]27

h,0,%,5,p,q

and

Zjljz%(g)];jik ® 7,(9)
OFET
= Z 7o (9)ij (G2 @ J2)l(52T(0):)(j2T'(0);)* (J2 @ J2)*-

0,1]

—7
Recall that for 0 € Z(G) , the map G x G 3 (g,h) — o(ghg~'h™') € T induces a non-degenerate
anti-symmetric bicharacter of G/|G, G]. Thus for each g € G, there exists a map ¢, : G — G satisfying

Xo(h) = 0(ps(9)hp,(g)"th™1). Note that the element ¢, (g) is unique up to a multiple of a central

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 261



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

element of . Using this, we have

Z Xq(h h)ijTo (h)pg

heG

= 0(0a(9)ha(9) " h ) 7o (h)ij7e (h)pg
heG

= 7o (0o (9) e (9) " h T R)iiTo (B pg
heG

=3 > 7o(@e(9))iaTe (M) avTo(05(9)) 670 (h)pg
heG ab=1

= G o (90920

Thus we obtain
Z J1J27o(9)J271 ® m(g) = Z To($0(9)) ® Jojrijoma(0s(9)) 1215
an/(E)T an/(E)T
This implies that there exists a scalar ¢,(g) € T such that
To(5(9)) = co(9)jri2mo@)(9) 377,

ok ek ok

251526 (00 (9)) 20102 = o(9)T57(9)-
Since (j271)® = I and j17,(g)ji = m5(g), the above two equations are equivalent.

In the above argument, we have seen that x,(h)m,(h) = 7,(¢,(9)h¢s(g) ") holds. On the other
hand, Eq.(3.19) implies that

Xg(h)T‘-U(h) = j2776(a) (g_l)j;ﬂ—cr(h>j2779(a) (g>];
holds, and so
. S .o k%
JaTo() (9™ )5 ~ Jri2me@)(9)J51
where ~ means that two matrices are proportional. Let R = j,j;, which is a unitary of period three.
Then if o is replaced with 6(c) and g is replaced with ¢! in the above, we obtain

To(9) ~ Riamoqiay (97 )is R = Riamyz (9~ )iz R* = Rimy) (97 R.
Since R* = I and 0(6(0(7))) = o, this implies 7, (g) ~ 7, (g7 "'), and g> € Z(G) for all g € G. Therefore
s =2.

— 7
Let o be the unique element in Z(G) , and let 7 = 7,. The above argument shows that there exists
7 € Hom(G, T) such that R*7(g)R = 7(g)7(g). Since R has period three, we have 78 = 1,and 7 = 1 as

Hom(G,T) = G/Z(G) is an elementary 2-group. This implies that R is a scalar. O

We have seen that G is an extra-special 2-group of order st> = 2t%. Let o be a unique non-trivial
character of Z(G) = Z,. Then 7, is a unique irreducible representation of dimension ¢, and we denote
(79, Ky) = (7, K) for simplicity. The set G is a singleton {7}, and we can identify (V, K) with (, K, ).
The period three unitary jo7; is a scalar, which we denote by ¢ € T, and we have j, = €(7;. This implies
that Ux = V, and x,(g) is determined by 7w(g)m(h) = xn(g)7(h)7(g). Eq.(6.4) implies | = 0. In summary,
every information of C is encoded in the tuple

(IC :ICW’VZW7U’C :ﬂ-ajlan = EleaX7l :O)
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Now we proceed to the reconstruction part. Recall that there are exactly two isomorphism classes of
extra-special 2-groups for a given order 22k+1 where k is a natural number (see [49, Exercise 5.3.7]). In
the both cases, there exists only one irreducible representation whose dimension is larger than one, and
its dimension is necessarily 2*.

Lemma 6.13. Let G be an extra-special 2-group of order 2***, and let (7, K,.) be the unique irreducible
representation G of dimension 2*. Let j be an anti-unitary on K, satisfying j> = ¢ € {1,—1} and
jm(g) = 7(g)j forall g € G, and let ¢ be a third root of unity. Let x be a bicharacter of G determined by
m(g)mw(h) = xa(g)m(h)m(g). Then

(]C = ]Cwuvzﬂ-a U/C :ﬂ-?jl :jujQ = 6Cj7X7l :O)u

is an admissible tuple.

Proof. We will show only Eq.(3.21),(3.33),(4.1),(4.2),(4.3),(4.4) because the other conditions are easy to
verify. Recall that we have n = |G| = 22F1, m = 2k, d = 2FF1,

Since ghg 'h™' € Z(G) = Z,, Eq.(3.21) holds. Since d*> = 2n, Eq.(4.1) is automatically satisfied.
Since [ = 0, Eq.(4.3) is automatically satisfied, and the left-hand sides of Eq.(4.2) and Eq.(4.4) are 0. Since
TR m ® T contains no trivial representation, the right-hand side of Eq.(4.4) is 0. For an orthonormal basis

(T2, of K = Ky, let

Then

—Z U (R)T", j1(T))j1(Ux (h)T")

heG
Z Z z]7r ab Ea]l(T)><T,/771j><Tb7T/>j1(Ta)
zyab 1 heG
ok
D Gabip(T iy (DN Ty (T, T (T)
ddlmﬂ' 1,aY7, i J1 yLg by Jilla
,4,a,b=1

= (T, T"Vj3(T) = e(T", T'T,

and the right-hand side of Eq.(4.2) is 0.
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The left-hand side of Eq.(3.33) is m(g) ® m(g). On the other hand, the right-hand side of Eq.(3.33) is

Z > xul@)m(R)igm (h).y TS @ jTTy 5

1,5,¢,y=1 heG

Z S 7 (ghg )Ry TTS @ TV T

1,7,%,y=1 heG

! () (h) * . .
== E E 9)ia™(h)av7(9) 67 (M) 2y Ti Ty @ 11 T5T, 55
i7] x7yab 1 heG
2k
. * ok
" ddimn Z 00,208, 7(g )wﬂ( Vi LT ®@ 1131, 5,

i7j7x7y7a7b:]‘

=7(g) ® j1m(9)i1
=7(g9) @m(g),
which finishes the proof. O

Proof of Theorem 6.1. We use the same notation as in the above lemma. Since 7 is irreducible, if j' is
another anti-unitary on I, satisfying j'n(g) = m(g)j’ for any g € G, there exists ¢ € T with j' = ¢j.
Choosing a square root ¢/ of ¢, we get j' = c!/?jc~'/2. Therefore the equivalence class of the tuple in
the above lemma is determined by the third root of unity {. Theorem 4.9 shows that there are exactly
three C* near-group categories for a given extra-special 2-group G as far as j exists. Therefore to finish
the proof, it suffices to show the existence of j satisfying the condition of the above lemma.

When |G| = 8, we have dim 7 = 2, and the anti-unitary j with j* = 1 is unitarily equivalent to the
complex conjugation of C2. Thus the condition jm(g) = 7(g)j is equivalent to the existence of a real
representation equivalent to 7. The dihedral group Dg of order 8 satisfies this condition. When dim 7 = 2
and j? = —1, the condition j7(g) = m(g)j is equivalent to 7(G) C SU(2). The quaternion group Qs
satisfies this condition.

Now we consider the general case. Note that every extra-special 2-group of order 22**1 is a central
product of either k copies of Dg, or k — 1 copies of Dg and 1 copy of Qs (see [49, Exercise 5.3.7]). Moreover,
the irreducible representation 7 can be constructed from 2-dimensional irreducible representations of Dg
and (Jg by tensor product. Thus there exists j as in the previous lemma with € = 1 in the former case,
and € = —1 in the latter case. This finishes the proof. U

We denote by C¢ ¢ the C* near-group category arising from the tuple
(IC = Kwav =T, Uk = T, J1=J,J2 = ECj7X7l = O)
Corollary 6.14. The fusion category Cq ¢ is group theoretical.

Proof. We may assume C¢,, C Endy(M) and we use the same notation as before. We claim that there
exists an abelian normal subgroup H < G of order 2! with Z(G) C H and xy,(hs) = 1 for any
hi, he € H.Indeed, since (G is a central product of copies of Dg and (Jg, it suffices to verify the claim for
G = Dg and G = (Jg, which is straightforward.

Let M and N be the fixed point algebras

{z € M; ay(x) =z, Vh € H},
{z € N; a)(z) =x, Vh € H}.
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We claim M = N x, H.Indeed, we have M Cc M?#(@ = N x, G, and every element in N X G is
uniquely expands as

> Ulg)p(ay).

geG

Thus Eq.(3.22) implies N x, H C M*. Since,
[M? . N]=[M:N]/|H| =2 = |H| =[N %o H : NJ,

we get the claim.

Letv: M < M and i : N < M* be the inclusion maps. Then we have p = vupy, and the image
of pov is N*I. By the duality between the crossed product inclusion N C N X, H = M* and the fixed
point algebra inclusion N C N, the endomorphism jpor € Endg(M*) contains an automorphism, say
0 € Aut(M*™). Thus the Frobenius reciprocity implies that [1p0] = [07] and we get [p] = [v07].

Since H is abelian, the endomorphism 7v is decomposed into automorphisms, and so is Zpv. Since o,
normalizes vy, it globally preserves M ¥, and there exists 3, € Aut(M*) satisfying a,v = v/3,. This
implies that Vo, = Vv 3, is decomposed into automorphisms too. Thus the fusion category generated
by Upr and Vayv is a pointed category, which is categorically Morita equivalent to Cg ¢. O

Remark 6.15. Let the notation be as in the above proof.

(1) The subgroup H is not unique. For Dg, there are three possibilities; two of them are isomorphic
to Zy X Zs and the other is isomorphic to Z,. For ()g there are three possibilities, and they are all
isomorphic to Zy.

(2) Let L be the group generated by the automorphisms contained in 7pr and Doy, in Out(M 7).
Since the global dimension of Cg ¢ is |G| + d* = 221 x 3, the order of L is 22**! x 3. The group
Z3 % SL(2,2) = Z2 x &3 is a canonical candidate of L as we see below. When k = 1, this group
is isomorphic to G,.

Example 6.16. Let F; be the finite field of order 2, and we consider the following subgroups of SL(2 +

k,2):
r Yy a £y
L={ =z u b ESL(2+k,2);a,beIF’§,<Z u)eSL(2,2)},
of of I,
1 Yy ooa
A={| 0 1 0 | €SL(2+k,2); ycFy, acFh}
of o I,

Then L = 73% x SL(2,2) = 72" x &3 and A = Z5™. The normalizer of A in L is

1 v a
Ne(A)={l 0 1 b |€L;abelF yecTF},
of o I,
and Np(A) = A x K with
10 O
K={| 0 1 b |ecL beFs}y=7k
o ol I,
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Let
1 0 a
B={[ 0 1 0y | € SL(2+k,2); a cF5}.
oF of 1,

Let P be a type III factor and let 5 : L — Aut(P) be a map that induces an injective homomorphism
from L into Out(P). We assume that the restriction of 3 to A is an action and (5, normalizes 4 for any
ke K.Let M = P xg A, and let v : P — M be the inclusion map, let

0 1 0
f= 1 0 0 | eL,
or of I,

and let 0 = ;. We claim that p = vV generates a C* near-group category with a noncommutative ¢
with |G| = 22**1, Indeed, since f~' = f, the endomorphism p is self-conjugate. Since

dim(p, p) = dim(zv s, Brov) = > (B, B) = 1,

g,he A

p is irreducible. Since [y for k € K normalizes (34, it extends to an automorphism By € Aut(M). We
denote by [ the dual action of  restricted to A. Then since

1 0 a 1 0 Ok
fl o1 o0 |f=(0 1 a |ek,
o o I of of I,
1 1 a 1 0 0 1 1 a 1 1 a
fl o 1o lr=1 1 a =01 0]l o0 1 0],
of of I of of I of of I of of I

we get

[0°) = [Woowow) = [P = > BT+ Y _[VBnsm7]

geA keK heB
= [Bur + > vl = D (BB +2%0l.
keK heB TEA, keK

This shows the claim with G equal to {[3;, BT]}TE A ke C Out(M), which is an extension

0 A5G = K—=0.

It is an interesting problem to compute a cohomological invariant for /3, and identify it with the third
root of unity ¢ in Cq .

The extra-special 2-group G obtained in this way is always a central product of £ copies of Dg. To
obtain the other type of an extra-special 2-group of the same order, we should replace A with a subgroup
Aj isomorphic to Z, x Z45~*. For example, we could choose A; to be the group generated by B and

1 1 0
0 1 e |, e =(1,0---,0)€F5
of of I,

Note that the group G is not uniquely determined by the pair (L, A;), but it also depends on the choice
of 3. The pointed category generated by 37, carries a cohomology class in H?(L, T). On the other hand,
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there is a restriction map from H3(L, T) to H3(SL(2,2), T) = Zgs. We conjecture that H3(SL(2,2), T)

parameterizes 6 different C* near-group categories Cg ¢ with |G| = 22F+1,

7. IRRATIONAL CASE

In the rest of this note, we investigate the structure of C* near-group categories in the irrational case.
This section is devoted to laying the basis for the classification of such categories.

Assume that we have a C* near group category as in Section 3 with irrational d. Then Theorem
3.9 implies that G is abelian, the multiplicity parameter m is a multiple of n = |G|, and the symmetric
bicharacter (-,-) : G x G — T defined by (g,h) = x4(h) is non-degenerate. In what follows, we
use additive notation for G. We have two unitary representations V' (g), Ux(g) in K, equivalent to the
regular representation of (7, and two anti-unitaries j;, j, satisfying the conditions stated in Section 3. Let
vo(g) =V (9), v1(g) = Ux(9), va(g) = (j172)*Ux(g)j1j2, and w = j1jo. Then they satisfy the following
relations: w® = I, ji = e € {1, =1}, jivi(9)j; ' = v-i(9), hwji ' = w*, w*vi(g)w = vita(9),

vir1(9)vi(h) = (R, g)vi(h)visi(g),

where 7 is understood as an element of Z /3Z.

Lemma 7.1. Let G be a finite abelian group of order n, and let (-,-) : G x G — T be a non-degenerate
symmetric bicharacter. Let H(G) be the universal C*-algebra generated by three unitary representations
Vo, V1, V2 of G and a unitary w satisfying the following commutation relations:

(7.1) vir1(g)vi(h) = (h, g)vi(h)vis1(g),
(7.2) w*vi(g)w = viy1(g),
(7.3) w? =1,

where i is understood as an element of 7./ 3Z. Then there exist exactly 3n irreducible representations of H(G),
and they are of the following form: The representation space is (*(G) and

(7.4) Ta.c(V0(9)) f(h) = (g, h) f(R),
(7.5) Tac(v1(9))f(h) = f(h +9),
(7.6) Tac(v2(9)) f(R) = a(h)a(h — g) f(h — g),

(7.7) Taelw) f(h) = =" a(h)(h, k) f (k),
Vi

wherea : G — T and c € T satisfy
(7.8) a(g +h){g, h) = a(g)a(h),

(7.9) &Y alg) = vn.

geG

Proof. Note that the dimension of the *-algebra generated by vy,v;, v3, and w is 3n3. Thus it suffices to
show that there exist 3n irreducible representations of H(G) of dimension n as above.

Since (-, -) is a symmetric 2-cocycle, it is a coboundary and a function «a satisfying Eq.(7.8) certainly
exists. We choose one of them and denote it by a. Let @’ : G — T. Then a’ satisfies Eq.(7.8) if and only if
a’/a is a character, and so there are exactly n such functions.
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For a function f on G, we define its Fourier transform F f(h) = f (h) by

f(9) = % S {0 i h).

heG
Then Eq.(7.8) implies

(7.10) a(g) = a(0)a(g).
Since the Fourier transform preserves the ¢*-norm, we have |a(0)| = 1. Thus for a given a, there exists
exactly three ¢ € T satisfying Eq.(7.1). We choose one of them.

Let u(g)f(h) = (g,h) f(h) and o(g) f(h) = f(h + g). Then the commutation relations o(g)u(h) =
(g, h)(h)o(g) and p(g)F = Fo(g) hold. Let Af(h) = a(h)f(h). Then we have pu(g)AF = AFo(g). To
show that 7, . is a well-defined irreducible representation, it suffices to show ¢*(AF)? = 1 because if it is
the case, we can put 7, .(w) = cAF, Ta(v0(9)) = 11(9), Tac(v1(g)) = 0(g), and

7Ta,c(UQ (g)> = 71-cL,c(u})*ﬂ-a,c(Ul (g»ﬂ—a,c(w)'
Indeed,

FAFf(9) = 5 3 GRS (F) = 5= 3 alo + B/

- —“% > alg+k)f(k) = —d(?j a(g){g, kya(k) f (k)
keG keG
= a(0)A"F A" f(g).

This shows (AF)3 = a(0).

We now show that if 7, . and 7, » are equivalent then (a,c) = (d/, ¢). Note that they coincide on
C*{vo, v1 }, which are already irreducible. Thus if they are equivalent, they must coincide on H(G), which
implies (a, c) = (d/, ). O

Remark 7.2. We always have the following relation:

Tae(V2(9)) = a(g)Tac(v1(=9))Tac(vo(=9))-

We introduce an anti-linear involutive x-isomorphism « of H((G) by setting

K(vi(g)) = v-ilg),  r(w) =w".

We say that (7, j, K) is a covariant representation of (H(G), k) if (7, KC) is a representation of (&) and
J is an anti-unitary of K such that 7(x(z)) = jm(z)j ! holds for all z € H(G) and j? = € is a scalar. We
say that a covariant representation is even (resp. odd) if ¢ = 1 (resp. € = —1). We would like to classify
all even and odd covariant representations.

We fix a : G — T satisfying Eq.(7.8) and a(g) = a(—g) for all g € G, and set a,(g) = a1(g)x(g) for
all x € G. Let ¢, ;, i = 0, 1,2 be the three solutions of Eq.(7.1) for a,. Note that @ (0) = @,-1(0) holds.
Indeed, choosing h € G satisfying x(g) = (g, h) for all g € G, we obtain

@ (0) = a(—h) = a(0)a(—h) = a(0)a(h) = a(h) = a7 (0).
Thus we may and do assume ¢, ; = ¢,-1 ;.

Let (7, k) be a representation of H(G). Then Lemma 7.1 shows that up to unitary equivalence, we
may assume the following: K = (?(G) @ Ko, m(vo(g)) = pu(9) ® I, 7(vi(g)) = o(g) @ 1,

m(w) = (e, ® CA(9))(F @),

geG
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where ¢, is the projection from ¢?(G) onto C4,. Ky is decomposed as
Ko= B Ku
x€G, i=1,2,3

and A(g)|x,, = a(9)], Clk,, = cyil.
Let j be an anti-linear unitary of K satisfying j? = €. Then (7, K, j) is a covariant representation of
(H(G),y) if and only if

(7.11) Jm(vo(g)) = m(vo(g))J,

(7.12) gr(w) = 7(w) ™.
Indeed, it is clear that the two conditions Eq.(7.11),(7.12) are necessary. Assume conversely that they are

satisfied. Then

1 1

= jm(w) ' w(vo(g))m(w)j " = m(w)jm(vo(g))s ' m(w)™!
= m(w)m(vo(g))m(w) ™" = m(va(9)),

Jm(vi(g))i~ !

which shows that (7, H, j) is a covariant representation.

The equation Eq.(7.11) is equivalent to the condition that there exists a family of anti-unitaries j(g)
on H such that jd, ® £ = 0_;, ® j(h)E. The condition j2 = € is equivalent to j(—g)j(g) = €. Under these
conditions, we have

(7.13)  jm(w)dn ® & = %j > (k. h)s. © CA(k)E = % > (kYo ® j(k)CA(K)E,

keG keG

(7.14) m(w) " jon ® & = m(w) T, @ j(—h)E = % > (k h)o_ @ A(=h)"Cj(h)E.

keG
Thus Eq.(7.12) is equivalent to
(7.15) Jj(k)CA(k) = A(=h)*C*j(h).
We claim that Eq.(7.15) is equivalent to the following two:
(7.16) J(0)C = C75(0),
(7.17) j(h) = A(=h)j(0) = j(0)A(h)".

Assume Eq.(7.15) first. Then for h = k = 0, we get Eq.(7.16). This together with Eq.(7.15) for the case
k = 0 and the case h = 0 implies Eq.(7.17). It is straightforward to show that Eq.(7.16) and (7.17) imply
Eq.(7.15), and the claim is shown. Assuming these equivalent conditions, we known that j(—h)j(h) = €
is equivalent to j(0)? = e.

Summing up the above argument, now we have the following lemma:

Lemma 7.3. Every even covariant representation of (H(G), k) is a direct sum of the following covariant
representations (mw, H, j):

(1) H=0(G), ™ =my . withx*> =1, and jb;, = a,(h)d_p.

(2) H=0P(G)® (G), 7 =Ty ®my1,. withx? # 1 and

j($5h D yék) = Yay-1 (k)é_k D Eax(h)é_h.
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Every odd covariant representation of (H(G), k) is a direct sum of the following covariant representations
(m,H,j): H=0P(G)®C(G), 7 =Ty my-1,and

j(xéh D yék) == —@ax—1 (l{?)(g_k D Eax(h)é_h.

We get back to the C* near-group category C with irrational d. We may identify K with (?(G) @ K,
as above. We denote by 7}, (§) € K the element corresponding to ), ® &.

Lemma 7.4. For a given C* near group category with a finite abelian group G' and irrational d as in Section
3, there exist a non-degenerate symmetric bicharacter (-,-) : G x G — T, an anti-unitary J, and mutually

commuting unitaries A(g), C acting on K satisfying J* = ¢, JC = C*J, JA(g) = A(—g)*J,
A(g)A(h) = (g, M) Alg + h),
1
_ A — (3
N Y Alg)=C%,

geG
V(g)Tu(§) = (g, ) Th(§),
Uk (9)Th(§) = Th—y(),
J1(Th(§)) = T-n(A(=h)JE),

Z T(C*JE),
J1J2(Th(§ T ZG (k)S),
J251(Th(§)) = Z (h, k)T (CTA(h)"E),

(g2 0 1)Uk (9) (2 0 ji ) Th(€)
= Thig(A(g + h)A(R)E) = Ux(=g)V (=9)Tn(A(9)S)-
Moreover we can choose an orthonormal basis {e; }1cx of Ko with an involution A > t — t € A satisfying
A(g)e; = a(g)xi(g)er, and Cey = cey, Je, = €,e5 with

(1) a(—g) = alg), a(g)a(h) = (9, hyalg + h),
(2) xe €G.xg =i
(3) e = a1, Ypecalg)xilg) = vne,”,
(4) ¢, € {1, -1}, g = €.
When € = 1, we can arrange the basis so that ¢, = 1 for allt € A.

Now we determine the form of p(7,(¢)). Since p(T,(¢)) = p(U(—g))p(To(§)), we have

HTy(€)) = ((2 0 41 NUk(=9) (G2 0 J1 )" @ Uk (=) U(To(£))
= (AUx(9)A™ ®@ Ux(—9))l(To(&)),

7; n(A(R)E). Thus [(T,(€)) is determined by {(75(&)). Moreover, [(1(€)) satisfies

where AT} (€)
= €)) and U (9)I(To(€))Uk(g)* = I(To(&)). Let K, be the linear span of {1,(£); & €

oy (UTH(€))) = (T
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Ko}, and let )}, be the projection from K onto K. This notation for i = 0 is consistent with the previous
one as we identify £ € K in the previous sense with 7(&) in what follows. Then

) = UTo()Qu = > UTo(€)) Uk (—k)QoUi (k)
= ZUIC (€))QoUx (k).

Therefore p(T,(£)) is determined by ((T,(£))Qo € KK,
Since o, (I(TH(£))Qo) = 1(To(§))Qo, we have

I(To(£))Qo € @Khlc—h’q;a
heG
and there exists a family of linear maps B}, : Ky — Koo Kjj satisfying
(T5(£)Qo = D _(Ux(—h) @ Ux(h))(A(h) ® I) B (S).
heG

Now we can write down [(7,(€)) in terms of B}, (§).

Lemma 7.5. There exists a family of linear maps By, : Ko — K2K satisfying
(7.18) UT,(&) = D _{g, k) (Uk(=h = k) @ Ux(1)(A(h) © I) By (&) Urc (k).

h.k
Proof. This follows from
U(Ty(8)) = Z (AUk(9)A* Uk (—k) ® Ux(—g))

< (U (—h) ® Ux () (A(R) ® 1) Bo(€) Ui (k)

= Z(UIC(_h — k) @ Ux(h)(A(h + k)A(g + h+ k)" A(h + g) ® 1) Bgyn(§)Ux (k)

h.k
= g+ h.k)(Ux(=h — k) @ Ug(h))(A(h + k) A(k)" @ I)Byyn (&) Uxc (k)
= (9.k)([U(=h — k) ® Ux(h))(A(h) @ I) By (§) U (k).

8. POLYNOMIAL EQUATIONS FOR THE IRRATIONAL CASE

Let G be a finite abelian group of order n, let m be a multiple of n, and let ¢ € {1, —1}. Let (-, -), K,
Ko, A(g), C, and J satisfy the conditions in the statement of Lemma 7.4, and let By : [Cy — ICoKo/Cjj be a
linear map. We defined | — K/CK* by Eq.(7.18). We will deuce the polynomial equations classifying the
corresponding C* near-group categories in terms of the above data. We set

g \/—Z g, Bh

heG

Lemma 8.1. Eq.(3.14), (3.15), (3.16), and (3.17) are equivalent to

B

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 271



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

6. S TJe) Tole Bule) = ~ LT (C g

s,h
(5.2) 3 Bl Brsy(€) = a6 - LT(C )Ty (C" E)"
(3) (X(h) @ X(h)B_y(X (h) A(~g) JE) X (h)"

= ZB “To(es)To(e)) To(Jer) To(es)".

(8.4) ZTO (es) By (C*JE) Ty(Jes)

Proof. Eq.(3.14) is

0= %jz( )" Qo + Zh Ti(es)) Ti(es) Ty (£))
_ Ve ey T (e
_ 7TO(C JE) +ZT4(A(—Z)J65) Ti(es)"UT4(S))
=Ygy # ST e Toe (A0 @ Dy le)
RV A
= 7TO(C JE + Y To(JA() es) To (A(I")es)* Byya(€)

l,s

= YT (C I + Y To(Jen) Th(en) By(€).

l,s
Eq.(3.15) is
Op.g(&; M@ = 1(T4(n)) " UTL(E)) + % > Quia(Ty(m)da(T(€))* Qs

_Z p—q,k U}C *Bh+q(77)*Bh+p(§)UK(k>
h,k

1

EZ p— ¢, k)T (C*In) T (C*JE)",
K

which is equivalent to

ZB’H‘J )" Brp(§) = 0p,q(&,mQo — %ZTO(C*JU)TO(C’*J@*.
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UT-4(A(=9)JE) = > UTy(€)) Tusrles)T-n(en) T(A(h) Je) Tir(es)®

= > (9. F)Uk(k)" By (&) To(A(h) es) To(er) Tu(A(h) Jer) To(es) Uk (h + k)

= > g h+ k) (Ux(=h — k) @ Ux(h))(I ® A(~h))By_p(&)*

h,k,s,t

x Ty(es)To(e) To(Jen) To(es) A(—h) U (k).

which is equivalent to

(A(h) @ I) Bp—g(A(—9)JE)
= (g, 1) (1 ® A(=h))By-n(€)" ) Toles)Toler) To(Jer) T (es) " A(=h)".

Replacing g with g + h, we get

(h, h)(A(h) @ A(=h)") B_g(A(=h)A(—=g) JE)A(=h)
= By(&)" Y To(es)Toler) To(Jer) To(es)".

Eq.(3.17) is

L(a(Ty(€)) = D Tules)UTy(€)) T A(=1) Jey)

= > {9+ h ) Toni(e) U (=k) Byn (&) (AR) A(h + k) To(A(h + k) Je)Ux(=h)

= Z (9 + h k)T p—i(es)Ux(—k) Byn(§) " To(A(k) Jes) U (—h)

= (g =k, h)(Uc(~h — k) @ Ux(h))To(es) By—i(€) To(A(—h) Je,) Uk (k)

=€) (g9— k. h)(Uc(=h — k) @ Uc(h)To(A(h) Jes) By—i(€) To(es) Uk (k).
h,k,s

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 273



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

The left-hand side is
% > (. DUT(CrI€))
-~ ZWZ<L B) (U(—h — k) @ Ug(h))(A(R) @ 1) Byt(C* JE) U (k)

\/—Z g- k’l—h>(Uk( h = k) @ Ux(h))(A(h) @ I) BI(C™ JE) Uk (k)

h,k,l

=) (9= kW) (Us(=h = k) ® Ux(h))(A(h) © I) By (C*JE) Uk (k),

hk

which shows that Eq.(3.17) is equivalent to
B,(C*JE) = Z To(Jes) B, (€)*Ty(es).

Remark 8.2. By Fourier transform, Eq.(8.1) and (8.2) are equivalent to the following two:

(8.5) D To(Jes) To(es)* Bo(€) = —éTO(C*Jg)*,

5 By Bu(e) = =g, - Momcr it ey

Eq.(8.3) is equivalent to the following two:
(8.7) By(A(h)§) = (A(h) @ A(h))By(§)A(h)",

(8.8) —EZTO To(Je) To(er)* Toles)* B_y(A(—g) JE).

Eq.(8.4) is the equivalent to the following under the presence of Eq.(8.8):

~

(8.9) By(€)
— GZ (To(er)*To(es)* B—g(A(—g)CE) Ty (er)) To(Jer ) To(es) To(Jer)*

s,t,r
Note that Ty (e:)*Ty(es)* By (A(—g)CE&)To(e,) is already a scaler.

Lemma 8.3. Eq.(3.33) is equivalent to
(8.10) > By(er)Byle,) = —Qo ® Qo — % ZTO es)To(Jes)To(Jer) To(er) .

Proof. Note that we have

Ulg) = Z(Qa h)SkSy, + Z Th—g(e)Th(er)".

h h,t
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In view of the proof of Lemma 3.15, it suffices to show that the above equality is equivalent to

J20 ji Ukl(g) (G20 ji )" @ Uxlg) = Y (g9, DQp(Si5))Q + Y UTi-g(eo))U(Tiles))".

The left-hand side is

Y Tysn(Alg + W) A(h) es)Th(es)” @ Trmg(en)Tiler)"

h,k,s,t

= Z <gv—h’>Tg+h(A(g)es)Th(es)* ® Tk—g(et)Tk(et)*-

h,k,s,t

The first term of the right-hand side is

> (9. )Ux(D)p(SoS5) Uk ()"

l

Il
Ul Ul .

(9. DU ()T (es) Tp(A(—p) Jes) T (A(—q)Jer) "Ty(er) U (1)

=M

~

3

Q
w
~+

(9, )Tp-1(es)Tyi(er)” @ T_p(A(—p) Jes) T_(A(—q) Jer)"

~

S

)
»
~

M

=
ko
S
)
-~

(g, b+ B)Thirp(es)Th(e)” © Top(A(=p)Jes) T (A(K) Jer)"

(9, h + k) Thip(es)Th(er)” @ Trp(A(k — p)Jes) Ti(A(K) Jey)*

>
-
3
»

~

The second term of the right-hand side is

Y WUkl=h = k) ® Uc(K)({l = g, h) A(K) @ 1) Byrii-y ;)

% Broa(ea) (1 —YA(K)* ® I) (U (h + ) ® Ug(—k))
= Y G IUk(—h — k) ® Ue(k)(ARK) @ I)
X Brow_ioes) Biles)" (A(R)" @ D)(U(h + k) @ U(—F))

= > (9. h+k)(Ux(=h —p) @ Uc(—k + p))(Alp — k) ® I)
h,k,p,l,s

X Briyg(es) Bilen) (A(—k)* ® I)(Us (h) ® Uk (k)).
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Thus Eq.(3.33) is equivalent to

Z Bl+p,g(€S)Bl(es)*

l,s

= 5gp<g, k)A(g — k)" A(g) A(=k) @ Qo
ZTO (p — k) e) To(A(—k)*er)* @ To(A(k — p)Jes) To(A(k) Je,)*

= 0gpQ0 @ Go — - ; To(es)To(er)” @ To(Jes)To(Jer)*

O
Lemma 8.4. Eq.(4.1) is equivalent to
m 1
(5.11) (= - E)To(f)
= ZTO h)*C*Jes)" B_n(To(es)" Br(§)To(er)) To(C™ Jey).
h,s,t
Proof. The left-hand side of Eq.(4.1) for T; = T}, (es) and T; = Ty (e;) is
- Z J2(Thn(es)) UThr(es) UT5(€)) Th(er)) g2 (Th(er))
h kst
1 -
h,k,p,q,s,t
X T (€ Te,) UUR(h) To(Ah)* e, By (€)To(e0) Ty (C* Tey)
1
=7 Y (ha = )Ty o (C"Teg) UT-n(To(A(h) es)" Byrn(€)To(er) Ty (C* Ter)
h,q,s,t
1 _
h,q,s,t
X To(A(=g)"C"Jes)" Bon—g(To(A(h)"es)" Byyn(§)To(er) ) To(C™ T er)
n
=7 > g —h,g)Ux(—9)
h,s,t
X To(A(=g)"C"Jes)" Bon(To(A(h — g)"es)" Bi(§)To(er)) To(C™ T )
n
= > (g — h,g9)Ux(—9)
h,s,t
X To(A(=g)"Alg — h)*C" Jes)"B_y(To(es)" Br(§)To(er)) To(C™ T ey)
= g Z U (=9)To(A(=h)"C" Jes)" B_n(To(es)" Br(§)To(e:)) To(C* Jer).
h,s,t
Since
d(1_2_n)_d2—2n_md—n_@_l
n 2’ nd  nd n d
we get the statement. O
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Lemma 8.5. Eq.(4.2) is equivalent to

.12 Sy0(n, OTH(E) — {6, OTo(n)
= ZTO JN)" By—n(es)To(C* I Br(§) To(A(h)"C* ()T (es)).-
Eq.(4.3) is equivalent to
(8.13) GC*A(k?)* To(A(=k)"C)" By-1(§)To(n)
= n Z h) Bh—i(€)" To(C™A(h)"n)To(C*A(g)").

Under the presence of Eq.(8.7), Eq.(4.4) is equivalent to

(8.14) Z By(To(A(=g — h)*¢)*B_g—n(§)To(er)) By (er) To(n)

= (h, k) Be(A(=h)*C)"To(n) B-n(§) —

y \F<C*€ L)k ZTO en)To(Jer) To(Jn)".

Proof. We set T' = T,(¢), T" = Ty(n), and T,/ (C) in Eq.(4.2), (4.3, (4.4)). Then the left-hand side of
Eq.(4.2)is

Z Ty (0)* W) j2(L(Ty () j2(Tyr (C))T5)

= Z Ty ( e))ia(U(T, <s>>%<g~, I+ k) Tk (C* T Tn(es))
f Z (" b+ k) Uk, )Ty () U(T - (e2)) o (Th( By (€) To A(h)*C* JO) To(es))

= S gt LR

h,k,f,s
X Ty ()" UTn(es)) Ty (C" T By (§) " To(A(h) C*J () To(es))

= > (h g\ Ty () UT-(€5)) Ty g (C* T Byyn () To(A(R)*C*J() Ty es))
h,k,s

= (h9)Ux(g' — ¢" — 9)To(A(g' — g" — 9)"n)* By—gr—g-n(es)
h,k,s

X To(C*J By (€) To(A(R)*C* JC) Ty (es))

= Ukld — 9" — 9)To(Alg' — g" — 9)'n)" By—gr—g—n(es)
h,k,s

x To(C* I Byyn(§)"To(A(h + g)" A(g9)C* J()To(es))

= Uxlg' — 9" — 9)To(Alg' — ¢" — 9)"1)" By—gr—n(es)
h,k,s

X To(C* T Bu(§) To(A(h)" A(g)C* JC)To(es)).

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 277



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

The right-hand side is
€0g,gn(C,mTy(E) — é (Tyr-n(C), T—g(A(_g)Jf»Th—g’(A(h —4g')Jn)
h
1 /
= €0y g (C,MTy(§) — a Z(Ca A(=9)JE)0ngrgn Thg (A(h — g')Jn)
h

By (G M Ty (€) = 506 Al9) T Ty (Alg + 9" — ') I).

Thus we get

Sg.0(n, O)To(§) — <€ A(9)O)To(A(g — 9" )n)
= ZTO (9" — 9)"In)* By _p(es)To(C* T By (§) Ty (A(h)*A(g)C*() Ty (es)).

Replacing n with A(g — ¢')*n and ¢ with A(g)*(, we get Eq.(8.12).
Note that we have

Ja 0 G NI () = €Ty (A(—g)JE)) = % S (g, T (C* T A(~g) J€)
h
— T C* * .
\/— zh: h( 9)*€)
The left-hand side of Eq.(4.3) is

—Zz (g h+ k) (g, =) T (C*A(g) ') T-n(C*A(9)"€)
= LS = g )G — g RYUk(— k) By () To(C7 A(R) Ag'Y ) To(C* A(g)"€)
= % > g, Mg = g" k) Ux(=k) By 1 (C) To(C* A(h + ¢ ) ) To(C* A(g)"€)

= S T g~ 6" KU~k B (O To(C* A() ) To(C* A(9)*€)
h.k

The right-hand side of Eq.(4.3) is

J2 0 Ji (T (O) U(Ty(€)) Ty (n))
=g, 9)j2 0 ji " (Ty—g(To(A(g" — ¢')"C)* Bysgr—g (§)To(n)))

— €<.f/laﬁg> Z(ka g/ _ g")Tk(C*A(g' _ g//)*TO(A(g// _ g/)*C)*Bngng/(5)To(77)).

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 278



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications
Let f = ¢’ — ¢”. Then Eq.(4.3) is equivalent to

eC* A ( 0(A(=f) Q)" By (&) To(n)

it
= ST R B () To(C A M) Ty(C* Alg)°).

%\

The left-hand side of Eq.(4.4) is

(=k)Byrn(C)*(A(h) Uk (h + k) @ Ui (=h)) Ty () I(T4(€))

Byrn(C) Ty—n—rk(AR) ) Uk (=h)I(T,())

N k) By g1 Q) To( Al — B n) Ui — g Ty (6)
- Z NG RUi(—k) By sgr—(O) To(Alg = R)"n)Uk(k - ¢)
(eI — KA & Uel) By Ul

= Z(g, K){g", k) Ux (=) By g 1(C) To(A(g — k)*n)

X

—~

A(lC K —g)@Uk(k =k —¢")By—gin—i (§)Ur(K)
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The first term of the right-hand side is

Zl (&) T (e)) (T (er)) Ty (n)
= g, NI Uk (=h = [)A(h) @ Uk (h)) Bgn(§)To(en))1(Ty(er)) Ty (n)
fith

= (g, NUk(g" = NHTo(Alg" = [ Q) Byrgrs (€)To(e))U(Ty (e1)) Ty ()
fit

= 9. M)Ma. f— ") Ux(—p — 0)Alp) @ Ux(p))

fit:p,q

X By grp(To(A(g" = f)" Q)" Byagr—(§)To(e0)) U (@)U (er)) Ty ()
= > {g. /9" (Ux(—p — ¢)Alp) @ Ux(p))

fit.pa,r

X By_gnip(To(A(g" — )" C) Byrgr—(€)To(er)) Uk (q)
X UIC( )Bf+r(€t) (A(?“) UIC(T+Q)®UIC( ))Tg’(n)
= > (9. /)r—g.9")Ux(=p+7 = g)A(p) ® U(p))

fit.pr

X Bygrp(To(A(g" = [)"C) Byigr—1(§)To(er)) Brir(er) To(A(r) n) Uk (=)
=D (9. =g d"WU(=R)Ak +71 = ¢) © Uc(k +r —g))

fitkr
X B shir—g—g'(To(A(g" = £)"C)" Byrgr—s(§)To(€1)) Byr(er) To(Alr) n) Ui (=)
= Y g, N + g, gV Uc(=k)A(k =K — ) @ Uc(k =k — ')
fitkk
X B yk-t—g—g' (To(A(g" = f)"C) Bygr—(§)To(er)) By—is () To(A(=K)"n) Uk (K)

The second term of the right-hand side is

—Z ZO]1 g(&))aTg”(C»K

h,k,t

X UK(h)Th+k(et)j1(Th+k(et))j1(U]C(h)*Tg/(n))*
MZ (h, 9"} {9, 9"){C" Alg)"€, O,

X Tk(et)T h-k(A(=h — k) Je))T_p_y (A(=h — ¢')Jn)*

=i 32T 79770, )€ A9 e O,

X Tk(et)Tg —k+k'(A(9 —k+ k) Je) T (A(K') Jn)".
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Thus we get

D 9, 1) Brarw—g g (To(Alg" = [)"Q) Byrgr—1(€)To(er))
fit

X By (ed) To(A(=K")"n)
T 0O AG € Oy S To(e) T e To(AK) Ty

— (¢, W+ o KNG RVAG — K — §)* By 4(O)* To(Alg' — K)')

X Ak — K — ) By-gsi10(€)

=9, 9" g+ 9" k) (g", k) By gn 1 (A(k — k' — ¢')" ()"

x To(A(k — k' — ¢')* A" — k)'n)By—g 111 ()

= (9" g —k+K) g, K)(k—F —g¢,—g +k)

X By g1 (A(k — K — gl)*o*TO(A<_k/)*77>Bgfg’ﬂcfk/ (&),
where we used Eq.(8.7). Replacing k, , and ¢ with k" + k" + ¢/, A(—k")n, and A(g)*( respectively, and
multiplying (g, ¢”) make the first term of the left-hand side of this as

Z Byir—g(To(Alg + 9" = £)7Q)" Byygr—(§)To(er)) By-is(er) To(n)
It

=D BolTo(Alg + K" = 2)" Q) Byirr o (§)To(€0)) Boopr—t g (e0) To(1)-

The second term becomes
€

7 \/ﬁ<C’*§,C>KO ;To(etmuetm( In)

The right-hand side becomes

(0" K g K = g") (K" K+ ") By oo (AGK") A(9)*C) T () By (€)
— <g’ k//><g”7 k//><g7 k/ _ gl/> <k”, k/ + k//>Bg”—k”—k’(A(g + k”)*C)*TO(n)BgJ,-k” (5)
— <gll _ k/ _ k//, _g _ kl>Bg”7k”7k” (A<g + k//)*C)*TO(T])Bg+k”(£>-

This is equivalent to Eq.(8.14). OJ
Theorem 4.9 and our computation so far show the following classification theorem.

Theorem 8.6. C* near-group categories with a finite abelian group G and irrational d is completely classified
by

(67 <'7 .>7 KO? A(g)a Bga C? J)
satisfying the conditions in the statement of Lemma 7.4 and Eq.(8.5)-(8.14) up to equivalence in the following
sense: we say that two tuples

(67 <'a '>7 ’C07 A(g)a Bga Ca J)a (6/7 <'a '>/7 ’C67 AI(Q)) B;» 0,7 ‘],)

are equivalent if there exist a unitary W : Ky — K[, and a group automorphism ¢ € Aut(G) satisfying
(g, 0)" = (p(g), o(h)), A'(g) = WA(p(9))W?", B, (WOW = (W @ W)By(¢), C" = WCW?, and
J =WJW*.
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Now we assume that an orthonormal basis {e; };c of Ky satisfies the conditions in Lemma 7.4, and
define b7} (g) € C by
biu(g) = T(es)"T'(er)" By(ew)T (er).
Then we have

= bia(9)Tolen) Toles)To(er)".

r,8,t

Theorem 8.7. In terms ofb”( ), Eq.(8.5)-(8.14) altogether are equivalent to

(8.15) Z 9: Wby (h) = eerercaal(9)xu(9)bi (9),
\/_
(8.16) > b (0) = - Oscu
. U d Y
(8.17) > b)) = =t
5 /5 / 6 05 5 ! !
818 b bT‘ S . S,8 u,w _ g, S, u~Ss,u
(8.18) Z - P
Trlss N\ 57‘ r’(st t 0 Ofsrtér’ t/
8.19 byn(9)byn(g) = ——= — ==
( ) ; t,u(g) t,u(g) n d )
(8.20) XrXs 7 XeXu = biu(9) =0, Vg€ G,
(8.21) bin(9) = €s€ua(9)xu(9)b)5(—9),
(8.22) beu(9) = ererccia(g)x ()07 (—9),
(8.23) bya(9) = ereserucicrxr(9)Xs (9)0E2(9),
(8.24) crer Y €ibys ()b (9 + W)yt (g + k)
9,q,8,t
z, w CuE €y
= euewr () xu(h) (B, k) Z k)bo y \f— 8rubu 50 5.

Proof. Eq.(8.9) is equivalent to (8.15). Under the presence of this condition, we have equivalence of
Eq.(8.5),(8.6),(8.7),(8.8),(8.10) and Eq.(8.16),(8.18)-(8.21).
Eq.(8.11) is equivalent to

( —Zeretcrcta Xr(g)b P(—=9)ba(9),

n
g,7m,8,t

which follows from Eq.(8.18),(8.21),(8.23). We show, on the other hand, that this together with Eq.(8.18),(8.21)
implies Eq.(8.23). Eq.(8.18) implies

T,5 9055u 5s,u n 1
DHUCTES WAL SEE TR
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In the same way, we have
_ - n
3503 ecnalgh (o) = - -
s h nr

Thus the Cauchy-Schwartz inequality implies

S

WP (—g) = erercicralg)xr(9)bra(9),

which together with Eq.(8.21) implies Eq.(8.23).

Although Eq.(8.17),(8.22) are redundant, we put them in the statement to emphasize that the equations
are symmetric in left and right variables. In fact, Eq.(8.17) follows from Eq.(8.16),(8.19), and Eq.(8.22)
follows from Eq.(8.21),(8.23). In the rest of the proof, we assume the conditions we have obtained so far,
and show that Eq.(8.12),(8.13) follow from them, and Eq.(8.14) is equivalent to Eq.(8.24).

Eq.(8.12) is equivalent to

5U,T5p,1}

59,05r,v6p,u - d

=Y aenccalh)x:(h)bys ()b (g — h),

h,s,t

and by Eq.(8.22) and the Fourier transform, the right-hand side is equal to

—

D €= (g —h) = eebl ()P (k).
h,s,t k,s,t
Thanks to Eq.(8.15),(8.19), this is equal to the left-hand side.
Eq.(8.13) is equivalent to
ecsxr (k)xs(k)biu(g)

= creualg + k)a(k)xu(g + k)x:(k)(g + &, k>% > g, ha(h)xi(h)bSr(h).
h

Thanks to a(g + k)a(k)(g + k, k) = a(g)a(k)*(k, k) = a(g) and Eq.(8.22), the right-hand side is

crena () xlg T k)xt(k)% S (g, Byath)x (MR (h)

e O ACE! k)xtuc)% S g, L (—h).

This coincides with the left-hand side thanks to Eq.(8.15),(8.20).
We set £ = e,, ) = €p, ¢ = e, in Eq.(8.14). Then left-hand side is

> a(—g = h)xr(—g — Wb} (—g — h)By(To(es)) Byskled) To(ey).
g,8,t

Thanks to Eq.(8.22), this is equal to
S e (g + ) By Toles)) Bysalen) Toley)

g’s7t

— Z eterctc_rbz,’g’(g)b;’:(g + R0 (g + k) To(ew)To(ew)T (er)".

.g7s7t7’[)71'u7‘/r
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The first term of the right-hand side is

= eu(h, k) xu(h)xr(R)

,U7w7x7y

wbbF (k)b () To(ew) To(ew) To(ea) ",

@)

where we used Eq.(8.21). The second term is

an’uE* *
- d\/ﬁp1%;Ev(sw,véx,pTO(ev)TO(ew)TO(ez) .

Thus Eq.(8.14) is equivalent to Eq.(8.24). O

Since (-, -) is non-degenerate, there exists unique g, € G for each r € A satisfying x,(¢g) = (g, g,) for
any g € G.

Lemma 8.8. Eq.(8.15) and (8.23) imply
(8.25) bira(9) = crcuCsCibyi (9 + s — gu)-
Proof. Assuming Eq.(8.15),(8.20), and (8.23), we get
FH ) (h) = erercaalh)xa(h)bE,
= cerercya(h)xu(h)eserereucstsxs () xa(h)bey (h)
= e€seuCuC,Csa(h)Xu()xi(h)xs(R)bS} ()
= ¢ e Xu(R)xs (M) F~ (byy) ()
= cuC,CsCi(hy gu — go) F(07) (),

which show the statement. [l

We denote by G(A, C, J) the set of all unitaries acting on Ky commuting with A(g), C, J, and call it
the gauge group. An element v in the gauge group acts on the solution of the above polynomial equations
as B, = (v ® v) By(v*-)v*, or equivalently,

! ol
b;qj (.g) = Z Ur’rvs’svt’tvu’ub::Z(g)’

r,8,tu

It is convenient to introduce a matrix B(g) for each g € G with an index set A x A whose ((r,t), (s, u))-
entry is by’ (g). Then
1 94,0

B(g)*'B(g) = B(g9)B(g9)" = == F0®4,

where § € C*** is a vector whose (r, t)-component is d, ;. In fact § is a common eigenvector of B(0) and
B(0)* with an eigenvalue —1/d. Thus \/n3(g) is a unitary for g # 0, and 1/n3(0) is a unitary on {J}*.
An element v of the gauge group acts on B(g) as

B'(g) = (v ®7)B(g)(v" @ ).
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9. THE case oF m = |G|

In this section, we give a brief account of the most tractable case m = n among the irrational case,
which was essentially done in [32] and [16]. Since dim Ky = 1, we can choose e € Ky with ||e|| = 1 and
Je = e, and so € = 1. Such e is unique up to sign. We denote T, = T,(e). Then V' (¢)T}, = (g, h)T}, and
Uk (9)Ty, = Tj—,. We can arrange a(g) so that A(g) = a(g)I, and C'is a scaler, which we denote by c.
Thus

) (Th) = a(h)T_h,

Jo(Ty) = Z (h, k)T,
Vi keG
There exists b : G — C sat1sfy1ng By(e) = b(9)ToTvT§, and

= a(h)b(h + g){g, k) ThsxT-n T
hok
Theorem 9.1. The C* near-group categories with a finite abelian group G with m = |G| are completely

classified by ({-, ), a, b, ¢) satisfying the conditions in the statement of Lemma 7.4 and the following equations
up to the group automorphisms of G.

(9.1) b(g) = ca(g)b(—g),
(9.2) b(0) = —é,

©3) COLEERES
(9.4) b(g) = a(g)b(—g).

— c

9.5 b _ _ '

©0.5) > blg + Wbl + K)ila) = (o EbA(R) - 2
geG

Proof. Note that replacing e with —e does not change the above equations. Thus the statement follows

from Theorem 8.6 and Theorem 8.7. U

Remark 9.2. We rephrase the equations in the above theorem so that we can easily guess Galois conjugate
solutions in the non-unitary case. We use a parameter ¢ = ¢//n instead of c. For a given pair ({-, ), a(g)),
the polynomial equations are equivalent to

(9.6) = % ; a(g)

(9.7) d? = dn +n,

(9:8) Reb =0,

9.9) b(0) = —%

©.10) alg)blo)b(—g) = - — 2.
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/—1

©.11) D alg)o =)y + W0ty +8) = (0, 1) H0)0K) .
(9.12) Jb=b,
(9.13) d >0,

where R is a period 3 unitary on ¢*(G) given by

Ref(g) = calg)™" ) (g, h)f(h),

heG

and J is a period 2 anti-unitary on ¢?(G) given by

Jf(g) = alg)f(—g)-

They satisfy JR» = R?%J, and the eigenspaces of R are preserved by 7. We suspect that the last two
equations come from the unitarity of the category, and the other equations are already good enough to
give near-group categories in the general case. We show that known solutions of the whole equations

have Galois conjugate solutions that satisfy all the equations except for the last two.

Example 9.3. For G = Z,, there is a unique non-degenerate symmetric bicharacter (g, h) = (—1)9",
and there is unique a(g) up to complex conjugate given by a(1) = i. Then there is a unique solution of
Eq.(9.6)-(9.13):

7ri

, ez 1—+/3—(1++/3)i Q=1+ 3,

CcC = = s
/2 4

e~F  1—i
W) =5 =

For only Eq.(9.6)-(9.11), there is another solution
2 1+4/3 3 —1)i
V2 4
e 11
V22

Example 9.4. For G = Z;, there is a umque non- degenerate symmetric bicharacter up to complex

b(1) =

conjugate, and we consider (g,h) = (", where (, = e’n. For this there is a unique a(g) given by
a(1) = a(2) = (3. For this pair, there exists a unique solution of Eq.(9.6)-(9.13) up to group automorphism

given by
e%i fl 3+ /21
d (C?)) d= 9 )

b(1) = oS \/ )= (VI %ﬁm)

For only Eq.(9.6)-(9.11), there is another solut1on

o e 1
NEE
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b(1) = g( —V/21 —34+421 1 ), b(2) — C(—:s—\/ —3++21 1 )
U2 2 237 U2 2 23"
Example 9.5. For Z,, there is a unique non-degenerate symmetric bicharacter up to complex conju-

gate, and we consider (g, h) = i%". Then there exists a unique solution of Eq.(9.6)-(9.13) up to group
automorphism given by

a(l) = (21: ,a(2) = -1,

4

C, = 5 y =2 + 2\/57
4-2v2 i 4-2v2 i
b(l) = 616( 4 + 25/4)7 b(2) = <16( 4 - 25/4)7
b(2) = _71
For only Eq.(9.6)-(9.11), there is another solution
a(l)=a(3) = — %, a(2)=—1,
d = % d=2-2V2,
44+2v2 1 4+2v2 1
b(l) = Ci:)G( 4 + 25/4)’ b(3) - C156( 4 o 25/4)’
b(2) = —.

2

Example 9.6. For G = Zy X Zy = {0, ¢1, g2, g3}, there is a unique C* near-group category. There exist
exactly two non-degenerate symmetric bicharacters on Zy x Z, up to group automorphisms, and we
denote by (-, -); the one given by the following table. Up to flipping g; and g, there are exactly two a(g)

Jo | 91|92
g | -1]1 -1
g1 1]-1]-1
g | -1]-1]1

for (-, -)1. For a(go) = —a(g1) =1, a(g2) = 1, there exists a unique solution for Eq.(9.6)-(9.13):

1
==, d=2+2V2,

27

blgr) = - b(g2) =
For only Eq.(9.6)-(9.11) there is another solution

1
==, d=2-2V2,

—3mi

e 4
2 )

i
e 4

5(93) =5

2’
o) = s b = S blan) =
91—2, 92—2 93—2-
For a(go) = a(g1) =1, a(ge) = —1, there is no solution.

The other non-degenerate symmetric bicharacter (-, -), is given by the following table though there is
no solution for it.
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go | 91| 92
go| 1 ]-1|-1
g |-1]1 -1
gs -1 -1 1

For the complete list of the solutions of Eq.(9.6)-(9.13) for G with |G| < 13, see [16, Table 2] (see
Example 12.18 below for two additional solutions for G = Zy X Zy X Zs).

10. THE case oF m = 2|G|

In this section we assume m = 2n and write down the polynomial equations Eq(8.15)-(8.23) in a more
accessible form. The author’s experience tells that there are only finitely many solutions for Eq(8.15)-(8.23)
up to equivalence, and they are likely to satisfy Eq.(8.24) automatically, which in practice could be verified
by computer. We show that there are exactly two solutions, up to equivalence, of the polynomial equations

for G = Zs.

10.1. Possible cases. We choose the index set A of the orthonormal basis of Ky as A = {1,2}. When
X7 = 1, we may replace a(g) with a(g)x1(g), and we may and do assume x; = 1. Lemma 7.3 shows that
the only possible cases are the following:

e Case .y =x2o=1,e=1, Je; = ey, Jeg = e

e Casell. xyy = x2=1,e = —1, Jey = €9, Jeg = —e9, ¢ = Co.
e Caselll. \y =Lxa # L x3=1,e=1,Je; = e, Jeg = ea.
e CaselV. yy = Xl_l, X2 # 1. Jey = ey, Jeg = €eq, €1 = ca.

We use the lexicographic order of the set A> = {1, 2}? to express B(g) as a matrix.
Lemma 10.1. Case IV never occurs.

Proof. We assume that b}, (g) is a solution for Eq.(8.15)-Eq.(8.24) in Case IV. We introduce a unitary
operator R; of period 3 on ¢?(G) by

Rafle) = 290 S 9.1 (0

Then Eq.(8.15) implies Rlbéﬁ(g) = b;}(g) and R%b;f(g) = eb}ﬁ(g), which shows
183l = ol = 6231l

where || f|| denotes the />-norm of f € (*(G).
Eq.(8.20) implies that the matrix B(g) is of the form

B(g) =

* O O *
O % ¥ O
O *x ¥ O
* O O *

and Eq.(8.18) implies
1
3 0) P + R =

1 9
phl 2 p21 2~ L,O.
‘ 1,1(9)‘ + | 2,1(9)’ n d
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Thus L s .
: 0
20[o711% = flonall? + 1033)° =Y (= = =22 =1~ -,
n d d
geG

and ||bé?||2 < 1/2.If x| # 1, Eq.(8.20) implies b%?(g) = 0 and |b§;(g)|2 = 1/n, which is contradiction.
If i = 1, Eq.(8.23) implies b?f(g) = Xl(g)Qbff(g), and b?% is supported by H = {g € G; x1(9)* = 1}.
Note that H is an index 2 subgroup of G. For g € G \ H, we have \b%?(g)|2 = 1/n, and

1
312 = Y baile))* =5

2 Y
geG\H
which is contradiction too. O
10.2. Case I. We first assume only x; = x2 = 1.

We choose ¢ € T with ¢®a(0) = 1, and set w, = ¢;/c. Then w} = 1. We introduce a unitary
R € B((*(G)) of period 3 by

Ri(g) = C”jg) S (g, W f(h),

and anti-unitary J of period 2 by

I f(g) = alg)f(=g).
Then they satisfy RJ = JR?. Eq.(8.15) and Eq.(8.16) now become

RO (9) = wabi(g),
T (9) = esenbl(g).

In particular, the function b, is an eigenvector of R for the eigenvalue w,,.

Now we assume € = 1, Je; = ey, Jeg = ea. When ¢; = ¢y, the gauge group G(A, C, J) is O(2). When
C1 # Co, it is ZQ X ZQ.

It is straightforward to show the following lemma.

Lemma 10.2. Assume x1 = x2 = 1, e = 1, Je; = ey, Jes = ey. Let &1(g) = bi}(g), &(g) = bg:g(g),
m(g) = bgf(g), n2(g) = b}:;(g), u(g) = b}%(g) Then Eq.(8.15)-(8.23) are equivalent to the following:
(1) The matrix B(g) = (b;(9)) (rt),(s,u) is expressed as

1(9) 12(9) 12(9) 1(g)
Blg) = wiwinz(g) waR?u(g) wiRu(g) wiwim(g)
wiwama(g) wWiRu(g) wiR?u(g) wiwami(g)
1(g) m(g) m(g) £2(9)
(2) Foranyg € G,
(10.1) Ré&(g) = wiki(g), T&(g) = &ilg),
(10.2) Réa(g) = waéalg), TE&(g9) = &(g),
(10.3) Rmi(g) = wim(g), ITmlg) =m(g),
(10.4) Ria(g) = wana(g),  Tn2(g) = n2(9),
(10.5) Tulg) = u(g), JTRulg) = R*uly),
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(where the second one follows from the first one in the last equation though).

(3) £1(0) + p(0) = &(0) + p(0) = —1/d, m(0) + n2(0) = 0.
(4) Foranyg € G.

)
(10.6) &(@)* + 2m(9) + |u(g)|* = - — 97’0,
2 2 2 1 5970
(10.7) &2(9)|” + 2| (9)|° + |u(g)]” = ST
1
(10.8) Im(9)]> + [n2(9)” + [Ru(9))* + 1R u(9)|* = -
- 5970
(10.9) 2m2(9)m(g) + 1(g9)61(9) + u(g)é2(9) = ——,
(10.10) m2(9)&1(9) +m(9)u(g) + (wiwaRu(g) + DR u(g))n2(g) = 0,
(10.11) m(9)&(9) + m2(9)u(g) + (wiwsRu(g) + wiwzR*u(g))m (g) = 0,
(10.12) Im(9))? + n2(9)” + i Ru(g)R2u(g) + wiwaRu(g)R*u(g) = 0.
Remark 10.3. The condition (4) above imply
1
(10.13) &I + 2l + [l ll® =1 ==,
2 2 2 1
(10.14) €217+ Al + [l = 1 = =
(10.15) e l® + llm2ll” + 2)|ul? = 1,
1
(10.16) 20 m)ee) + (1 &)ee + (& mee =~
(10.17) (N2, §1)e2 ) + (M1, W) e2 () + (Wil + Wrws) {(p, M) 2@y = 0,
(10.18) (1, &) e + (M2, ey + (Wiloz + Drws) (i1, M) e @) = 0,
(10.19) 1?4 I1m2]|? + @iz (i, Rit) 2 (cy + wiwa(Rus, ey = 0.
Eq.(10.15) and Eq.(10.19) imply
(10.20) 2||ul]? — wiws (R, 1) 2 () — W1wa (R, 2y = 1.

Lemma 10.4. The solutions of the equations in Lemma 10.2 satisfy either of the following two:
(1) m(0) = —n2(0) € R with |n1(0)| < 1/(2v/n), and there exist k1, ko € {1, —1} satisfying

£(0) = £(0) = _i _ K1/ 1 — 4m]1(0)2,

2d 2\/n

1 R/ —4nm(0)?
ki/1 — 4nn(0)2 + Kol
Ruu(0) = R20(0) = oY 25%“ a3
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(2) There exist k1, ko € {1,—1} satisfying
1 K1
0) = &(0) = —— — L
€1< ) 52( ) 2d 2\/ﬁ7

n(0) = n2(0) =0,
1 K1
pO)=—5-+ NG

—_— —K1 + Kol

Ru(0) = R2u(0) = ity N

Proof. Lemma 10.2 (2) shows that &,.(0), 77,.(0), and 12(0) are all real and R?1:(0) = Ry (0). Lemma 10.2 (3)
shows that 71 (0) 4+ 72(0) = 0 and there exist real numbers x and y satisfying

1 1
§1<0) = §2(0) =50 x, M(O) iy +
Now Lemma 10.2 (4) with g = 0 is equivalent to
1
2 2
0 = —
2" +m(0)° =
1
m@%ﬂmmﬁzz,

71(0) (wiwaRu(0) + wiwaRpu(0) — 2x) = 0,
21(0)% + (w102 Rp(0))* + (wiwsRpu(0))* = 0.
Solving these, we get the statement. U

Let (3 = ¢*™/3. We can expand p satisfying Jpu = pas pp = o + pi + pio with Ry; = 4y and
J i = p; because we have JR = R2J. The index i in p; will be understood as an element of Zs.

Lemma 10.5. [fw; = wy = 1, there exists a solution of the equations in Lemma 10.2 only if dim ker(R—1) >
2. The solutions satisfy ||u1]|? + || p2||* = 1/3, and either of the following two:

(1) 71(0) = —12(0) € R with |n1(0)] < 1/(24/n), and there exist k1, ko € {1, —1} satisfying

£(0) = &(0) = — L — VLA (0F

2d 2./n
;mmz—é+“lligm@i
0) =~ + 5=
l0) = ~57 = 5=
(2) There exist kq, ko € {1, —1} satisfying
1 K1

51(0) = 52(0) = _2_d - m7
7}1(0) = "72(0) =0,
1 K1

/’LO(O) = _G_d - m7
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1 K1 Ko
O)=——+—4+ ——
11(0) 6d+3ﬁ+2—3n7
1 K1 K9

Hz(o):—@+m—2\/3—-

Proof. The equality ||z1 > + || 2||* = 1/3 follows from Eq.(10.20). Assume that (1) in Lemma 10.4 occurs.

Then we have
| /T (02
“oq " 2/n ’
Kiy/ 1 —4nn(0)2 + Kol
2y/n ’
/ﬁ\/m — Kol

2y/n ’
which imply (1).

We further assume dim(R — 1) = 1 and get contradiction. Since (£;(0), o(0)) # (0,0), there
exists a unique f € ker(R — 1) satistfying J f = f and f(0) = 1. Then we have & = & = &(0)f,
m = —ny = m(0)f, and py = po(0) f. Eq.(10.18) implies 771 (0)(£1(0) + po(0)) = 0, and we get 1, (0) = 0.
Thus 7; = 1, = 0. Eq.(10.15) implies ||| = 1/2. Since || ||* + ||p2]]? = 1/3, we get ||uo|* = 1/6 and
1o(0)?]| fI]? = 1/6. Eq.(10.13) and Eq.(10.16) imply

10(0) + 121(0) + p2(0) =

110(0) + C3p11(0) + Cap2(0) =

110(0) + G311 (0) + C3p2(0) =

A
G212 =5~ 5
Ho(0)& (0] fII? = —%.
and
51(0) 2 _ _ 2
uo(O)) =3 d>’
£(0) _ _§
10(0) d’

which is contradiction.
Now assume that (2) in Lemma 10.4 occurs. Then we have

1 K1

MO(O) + MI(O) + M2(0> = _Zl + m,
pl0) + o 0) + Ga(0) = —5 =2,
110(0) 4 G311 (0) + Cap2(0) = _Kg\;ﬁ@i,

which implies (2).
We further assume dim(R — 1) = 1 and get contradiction. In this case, we would have & = & = 3o,
11 = n2 = 0, which contradicts Eq.(10.16). ]

Remark 10.6. If w; = w, = (i, we can apply the same argument to (; 'R instead of R, and the same
statement replacing (110, 11, p2) with (g, p144, fto+;) holds.

In the same way, we can show
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Lemma 10.7. Ifw; = (3 and wy = (3 ', the solutions of the equations in Lemma 10.2 satisfy

1

(10.21) | + sl = 3

and either of the following two:
(1) m(0) = —n2(0) € R with |n;(0)] < 1/(2v/n), and there exist k1, ko € {1, —1} satisfying

61(0) _ §2(O> _ _i _ K14/ 1— 4%7]1(0)2,

2d 2
1 k1y/1 — 4nn(0)?
0) = ——
1 K9
0)=——+ ,
(0) =~ Ve
1 K2

(2) There exist k1, ko € {1,—1} satisfying
§(0)=&(0) = - — 57~

771(0) = 772<0) = 07

1 K1
0) = —— — ——
1 K1 )
0)=——
1 K1 K9

0)=——+-—F1+— :
w0 = —5 35 " 3
We can show the following lemma in the same way except for Eq.(10.23), which follows from Eq.(10.14),
(10.15), and (10.22).

Lemma 10.8. Ifw; = 1 and wy, = (i, the solutions of the equations in Lemma 10.2 satisfy

1

(10.22) lpoll” + llpaall* = 3
1
(10.23) &1 = 2l = 3llpll* = =,

and either of the following two:
(1) m(0) = —n2(0) € R with |n;(0)] < 1/(2v/n), and there exist k1, ko € {1, —1} satisfying

£(0) = £(0) = — =~ BV = Anm (O

2d SN
1o(0) = _6_1d + 25\/—;_71’
px1(0) = _6_1d - 25—;—”7
1 (0) = — g + 2O,
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(2) There exist k1, ko € {1,—1} satisfying
1 K1
4(0) = &(0) = 5 — o=,
m(0) = n2(0) = 0,
1 K1 %]
0) = —— 4+ 4 4 "2
w0 == 345 5m

1 K Ko

0 = — — _|_ _1 -,
e (0) = =6+ 3 % T e
1 K1

p1(0) = RN

10.3. Case II. We assume x; = x2 = 1, Je; = ey, Jes = —e;y. Since ¢; = ¢, we denote w = ¢, /c. In

this case the gauge group G(A, C, J) is SU(2).
Lemma 10.9. Let the notation be as above. Let {(g) = b;%(g) n(g) = bé}(g) wu(g) = b;f(g) Then
Eq.(8.15)-(8.23) are equivalent to the following:

(1) The matrix B(g) = (b;n(9))(r4),(s,u) is expressed as

—wRnu(g) nlg) —Inlg) @Ru(g)

Blg) = n(g) (g)  pl9) —n(9)
=In(g)  wg) —J&g)  ITnlg

WwRu(g)  —nlg) JTnlg) —wRu(g)

(2) Foranyg € G,

(10.24) RE = we,
(10.25) Rn = wn,
(10.26) Tp=—p, JRu=-Ru,

(where the second one follows from the first one in the last equation though).

(3) WRu(0) + wRu(0) = —1/d.
(4) Foranyg € G,

(10.27) Riu(9)* + Ru(=9)* + [n(9)* + In(=g)I* = % - 57
(1028) E0) + (o) + 2ln(o)? = .

(10.29) RV RP(g) + TR*u(aRg) + (o) + In(—a)? = 22,
(10.30) n(9)€(g) — Tn(g)ug) — @Rulg) + wR*u(g))n(g) =0,
(10.31) n(9)u(g) + Tn(9)TE(9) + @Rulg) + wR*u(g))Tn(g) =0,
(10.32) 2(9)Tn(g) + 1(9) TE(g) — E(g)ulg) = 0.
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Remark 10.10. The condition (4) above imply

(1033 o

(10.34) €N + [lell® + 2nl* = 1,

(10.35) Wl Ry ey + W(Ri, ey + 2|nl* =
(10.36) n, e = (e,

(10.37) (0, Imee = (& mee

Eq(10.33) and Eq(10.35) imply

(10.38) 2l ~ DR ey — Rt ey = 1=

Lemma 10.11. The solutions of the equations in Lemma 10.9 satisfy either of the following two:
(1) [n(0)] < 1/(2v/n), and there exist k1, ko € {1, —1} satisfying
1(0) K1 + K2+/1 — 4n|n(0)[?

§0) == i,
n(0) 2vn
K1 — Kay/1 —4dnn(0)2,
/‘L(O) - 2\/5 L
B 1 Kay/1—4n|n(0)]2.
Ru(0) _w( 2% 2V/n 1)’
where(0)/n(0) is interpreted as an arbitrary phase if n(0) = 1.
(2) n(0) = £(0) = 0, and there exist k € {1, —1} satisfying
Kl
1(0) = %7
1 K1
Ris(0) = w( =5 = m)-
Proof. Lemma 10.9,(2) shows 1(0) € iR and R?/4(0) = —R(0), and Lemma 10.9,(4) with g = 0 shows
1 1
2 2_ + 1
RuO) + IO = 5 — o=

~(@RA(0))? ~ (WREO)? + 2ln(O0) = -,
7(0)£(0) +7(0)1(0) — @Ru(0) — wRu(0))n(0) = 0,

—1(0)14(0) +n(0)£(0) + [@Ru(0) — wRpu(0))n(0) =
n(0)* + u(0)£(0) = 0.

1
EOF + [1O)]° +2[n(O)]" = —.
The first two with Lemma 10.9,(3) is equivalent to
1—-4 2
1, VT HOP,
2d 2\/n

Ru(0) =w( —
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If n(0) = 0, we get (2) or the n(0) = 0 case of (1). Assume 7(0) # 0 now. Then the third and fourth
equalities implies

_ )
SRu(0) — wRu(0) = ﬂa )+ 1(0) = ~E0) + 4(0)

~— | —

Thus we can introduce a real parameter [ satisfying

SUOn
£(0) 0 0)
0 |n<lo>|21

Iterating these into the last equality, we get

l
and
;o O o
l NLD
with x? = 1. Solving this, we get the statement. 0

We can expand 1 € (%(G) satisfying T = —pas u = po+ pt1 + po with Ry = Gy and J s = —pu.
Lemma 10.12. There exists a solution of the equations in Lemma 10.9 only if
dimker(R —w) > 2.

The solutions with w = 1 satisfy
2
@7

il + flp2l* =

Wil

and either of the following two:
(1) |n(0)] < 1/(24/n), and there exist k1, ko € {1, —1} satisfying
n(0) k1 + Kay/1 — 4n]77(0)]2i

R Y B
L kay/1 —4nn(0)]*..
MO(O) - (6\/5 - 2\/5 >1v

(0) = (o= + 2=

K1 1 ..

p2(0) = <W - m)l-
where (0) /1(0) ) is interpreted as an arbitrary phase if n(0) = 1.

(2) n(0) = £(0) = 0, and there exist k € {1, —1} satisfying
10(0) = 0,
0) = (5= + =i
20) = (557 = 5=
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The second case could occur only if dim{ f € ker(R —1); f(0) =0} > 2.

Proof. We assume w = 1. The proof for the general case can be obtained by applying the same argument to

WR, and replacing (po, f11, p2) With (g1, po, fo) or (e, o, f1). The first equation follows from Eq.(10.38).
Assume that (1) in Lemma 10.11 occurs. Then we have

K1 — K2y/1 —4n|n(0)|?.

110(0) + p11(0) + 112(0) = NG i
110(0) + Cape1(0) + Gapa(0) = —% _ eyl ;\‘/lg\n(O)Pi’
10(0) -+ Coyt1 (0) + Gapua(0) = %z _ R/l ;\;lgln(omi’

which implies (1).

We further assume dim ker(R — 1) = 1 and get contradiction. Since (£(0), 110(0)) # (0,0), we can
find f € ker(R — 1) with 7 f = f and f(0) = 1. Then we have £ = £(0)f,n = n(0) f, po = 110(0) f, and
Eq.(10.36),(10.37) imply

1(0)€(0) = 110(0)7(0),

1(0)* = £(0)110(0).

Since 11(0) € Rj, this implies either £ = 1 = 0 or py = n = 0. The first case contradicts Eq.(10.33),(10.34).
The second case with Eq.(10.33) gives ||4]|> = (1 — 1/d)/2 on one hand, and on the other hand we have

1 2

2 — 2 2_ - _ =
I = il + el = 5 = =

which is contradiction too.
Now we assume (2) in Lemma 10.11 occurs. Then we have

K

110(0) + p1(0) + p2(0) = %i,

p0l0) + G (0) + G0 = —55 = 371
pl0)+ G (0) + Goa(0) = 55 = 5=+

which implies (2).
In a similar way as above, we can show that the condition

dim{f € ker(R —1); f(0)=0} <1
does not allow any solution. U

Remark 10.13. If w = (i, we can apply the same argument to (; ‘R instead of R, and the same statement
replacing (1o, f1, fto) With (14, p1144, flot;) holds.
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10.4. Case III. We assume x; = 1, and xo # 1, X% =1, Je; = ey, Jes = ey. For simplicity we denote
X = X2. There exists unique g, € G satisfying x(g) = (g, g) for all g € G. Note that we have the

following for a,(g) = x(¢)a(g):

ax(0 \/— Z Gy h = a(—gy) = a(0)a(gy)-

heG
Thus
¢ = ay(0) = a(0)a(gy) = cialgy).
3 3

Since g, has order 2, we have a(g,)? = (g5, 9y) = x(9y), and a(g,)* = 1, which shows 3 = (c1a(g,))>.
Lemma 10.14. Forr = 1,2, we introduce unitaries R, r = 1,2, of period 3 on (*(G) by

R, flg) = DA S 0,1 ),
heG

and anti-unitaries J, of period 2 on (*(G) by

Trf(9) = xr(9)alg)f(=g).
Then Eq.(8.15), (8.20), (8.23), (8.25) are equivalent to the following conditions:

(1) Let&i(g) = bra(9), €2(9) = bya(9), 1(g) = br(g). The matrix B(g) = (by74(9)) (r1) (s.u) is expressed

&1(9) . 0( - 0( | 1(9)
_ 0 si(g) Rap(g) 0
BO=1 0 Rulg) Rinlg) 0 |
nlg) 0 0 &lg)
and the following hold:

Ri&i(g) = &(g), Ti&ilg) = &i(9),
Ra&a(9) = &a(g),  T2ba2(g) = &2(9).

@) x(9)u(g) = pu(g).

Proof. Eq.(8.25) implies b12(g) = b3l(g). Then Eq.(8.15), (8.20) are equivalent to (1).
Eq.(8.23), (8.25) are equivalent to

1(g) = x(g)u(g),
Rip(g) = Treax(9)Rapi(g) = S3Rap(g + gy),
Rop(g) = ciGax(9)Rip(g) = GARulg + gy),
Riulg) = 0102R2u<9) = Riu(g + gv),

Rau(g) = cicaRip(g) = Rou(g + gy)-
We show that all the conditions follow from the first one. Note that we have the relation Ry f(g) =
c1¢ax(g)R1f(g). One the other hand, the unitary R? = R,! is given by

\/—Z g, h (h)f(h),

heG

and in particular it implies that we have ¢;R3f(g) = coR? f(g) for any function f satisfying x(g)f(g) =
f(g). Note that the first condition implies

R 11(9) = a: (g + 9)ar(9)Rop(g + g5) = ar(9:)x(9)Rrpt(g + 1),

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 298



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

R7u(g) = Rip(g + gy)-

Thus the remaining conditions are equivalent to ¢3 = cja(g,) = cSa(g,)(gy, 9x)> which holds in general.

O

We arbitrarily fix ¢ € T with 03&(()) = 1, and define R and J as in the previous subsections. We set
¢y = ca(gy), which satisfies ¢} @, (0) = 1. We set w; = ¢;/c and wy = ¢;/¢,. Then w} = wj = 1. Note

that using notation in the proof of the above lemma, we have R, = w'R.

Lemma 10.15. Let the notation be as above. Let & (g) = b]iﬁ(g), &(g) = bg:g(g), 1(g)

Eq.(8.15)-(8.23) are equivalent to the following:
(1) The matrix B(g) = (b;'n(9))(r4),(s,u) is expressed as

&i(9) 0 0 ()
Bg = | 0 _walgdRulg) @iRulg) 0
0 waalg)x(9)Rulg) wiR?u(g) 0
1(g) 0 0 £2(9)
(2) Foranyg € G,
(10.39) R&i(g) = wibi(g),  JT&i(g) = &ilg),
(10.40) R&(g) = waa(gy)x(9)(9),  T&(9) = x(9)&(9),
(10.41) x(9)p(g) = u(g),
(10.42) Tu(g) = ug)-

(3) £1(0) + p(0) = &(0) + p(0) = —1/d.
(4) Foranyg € G.

O

(1043) 6 (0P + o) =~ — 22,
)
(10.44) &(9) + 1(9)]* = % -2,
(10.45) Riu(g)? + [R2p()f =~
— )
(10.46) @& (9) + m9)ae) = =2
(10.47) a(gy ) Ru(g)R2u(g) + algy)wiwax (9) R u(g)Ru(g) = 0.

Proof. The proof of the previous lemma shows that any solution satisfies

Rap(g) = wza(gy)x(9)Ru(g),

Riu(g) = waalgy)R*u(g).

Now the statement follows from the previous lemma and a straightforward argument.
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Remark 10.16. The condition (4) above imply

(10.48) [&? = &I =

Y

DO | —
Ul

1
(10.49) Iull® = 5
Lemma 10.17. Any solutions of the equations in Lemma 10.15 satisfy the following two conditions:

(1) There exists k € {1, —1} satisfying

6(0) = 60) = —5; — 5=
u@:—%+§%.

(2) For every order 2 element g € G, there exists , € {1, —1} satisfying

9 wlwga(gx)a(g)ﬁgj(Hx(g))/?

(Ru(g)) o :

and in particular
1+x(9)

(V2nRu(9))™ = (9x. 9x){g. 9)(=1) 2
Consequently, when a(g,) = %1, we have (v2nRu(0))'? = —1, and when a(g,) = +i we have
(V2nRu(0))2 = 1.

Proof. Since JRu(g) = R?*u(g), we have R%*u(g) = a(g)Ru(—g). (1) follows from the g = 0 case of
Lemma 10.15.
If g € G has order 2, we have R?1(g) = a(g)Ru(g). Thus Lemma 10.15,(4) implies |Rpu(g)|* = 1/(2n)

and
2

wiwa(gy)a(g)(Ru(9))”* + x(g)wrwaalgy)alg)Rpulg) =0,
which implies the statement. O

Note that Case III could occur only if GG is an even group because there is no character of order 2 for
odd groups. For small even groups we have

Lemma 10.18. Case III could occur only if #G > 8.

Proof. Assume that we have a solution (1, &, pt) for the equations in Lemma 10.15. Since x(g)u(g) = 1(g),
the function p is supported by

X ={geG xig) =1}
For G = Z,, we have
1 K 1 K1
0) = —— 4+ —— = — + L
7 RN TR NN N
On the other hand since {x}* = {0}, we have

1
5 = Il = (0,

which is impossible.
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For G with #G = 4, we have #{x}* = 2, and we set {x}* = {0, g, }. Since g, has order 2 and
JTilgr) = u(gr), we have pu(g1) = a(g1)p(g1)- Thus

(0) + pu(g1) 2 1(0)? + |p(g)” + (1 + algs))p(ge)
2 1

1 K
5 = [Ru(O) = |
Since
1
u(0)* + (g )P = llull* = 5,

and p(gy,) # 0, we get a(g, ) = —1. This implies

Ru(0) =¢ ;

and on the other hand (2v/2R:(0))2* = 1. This is contradiction as we have 7 = 4(0)® = 1, and

2—-V5+k
p(0) = Tl
For G = Zg, we have x(g) = (—1)7 and {x}*+ = {0, 2,4}. Up to complex conjugate, we may assume
; wig?
(g, h) = ¢Z", where (s = ¢’ . There are only two possibilities of a(g), and we can choose a(g) = ¢~ "¢

as the other one is a(g)x(g). Since Ju(g) = u(g), we have p(4) = a(2)(2) = (31(2). Now we have

10(0) + Gol(Gg ' 11(2) + Gopa(2))
7 .

Ru(0) =¢

Let = (5 '1u(2) 4 Cpu(2). Then

and

This implies
3p(0) £ /2 = 31(0)° + (=p(0) + /2 — 3p(0)*) V31

Ru(0) =¢
#(0) NG
On the other hand we have (v/12R(0))?* = 1, which is a contradiction as we have ¢** = 1 and
1(0) = V6 — V74 Ky
2v6

O

To see if Case Il really occurs, the first test case is order 8 abelian groups Zsg, Z4 X Zs, and Zg X Ziy X Zs.
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10.5. The case of G = Z,. Ostrik [47] showed that there is no near-group category for G = Z, with
m > 3. We give a proof of this fact in the case of m = 4.
There is a unique non-degenerate symmetric bicharacter (g, h) = (—1)9" for Z,, and there are exactly

two a(g). We may assume a(0) = 1, a(1) = i as the other one is its complex conjugate. Then a(0) = e,
and we choose ¢ = e~ 12. We identify 62(22) with C?, the set of column vectors with two components,
and express R as a matrix

73:613((1) 81)%<1 _11>:\/§+1+4(\/§—1)i(_1i })
J is given by
7(30) = (S )
Let

1 1
fo=<\/\§,/%1eg), flz(_\/\g/—%—le’:f>-

Then we have Rfy = fo, Rfi = Gf1. Jfo = fo. Jfi = fu lfoll> =3 — V3, | f1]? = 3+ V5.

Lemma 10.12 shows that Case II never occurs, and Lemma 10.5 and Lemma 10.7 show that the only
possible case is Case I with (w,ws) = (1,(3) as ( is not an eigenvalue of R. Since 15 = 0, the case (1) of
Lemma 10.7 is the only possibility. Note that we have 119 = 19(0) fo and 11 = p1(0) f1. Eq.(10.22) implies

% = 10(0)?[[ foll* + 12 (0)?[ 1]
1 K2 2 1 2 )2
:<3+\/§)(6_d_ﬁ) +(3_\/§)(6_d+m)7

which is contradiction as d = 2 + /6.

10.6. The case of G = Z3. Larson [39] showed that there exists no near-group category for G = Zs3
with m > 7. On the other hand, it is known that there exists at least one C* near-group category for
G = Zs with m = 6, which was first observed by Zhengwei Liu and Noah Snyder ([40, page 59], see also
[19, page 14]).

Theorem 10.19. There exist exactly two C* near-group categories for Zs3 with m = 6, and they are complex
conjugate to each other.

There are exactly two symmetric bicharacters of Z3 and they are complex conjugate to each other.
We choose (g, h) = ¢". For this, there is a unique a(g), given by a(1) = a(2) = (s. Since a(0) = i, we

Tl
choose ¢ = e~ 6. Then

/(1 0 0 L [t 11 a1 11
R=es [0 & 0 |—=|1¢GQ|=—=|C1 G|,
o0 ¢)v3\i1ga) B S e
£(0) £(0)
J| =1 ¢
f2) G )
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Let
1 0 1
fo= —22—3 ) f(/) = Gal ., fi= (3
-3 —(si G

Then Rfo = fo. Rfy = fo. Rfi = Gfi.and T fo = fo. Tfo = fo» Tfi = fi. They form a (non-
normalized) orthogonal basis of ?(Z3) as well as the real vector space

{fet(zs) Jf=f}
We prove the above theorem by showing the following lemma.

Lemma 10.20. For R and J as above, there is no solution of the equations in Lemma 10.9, and there is a
unique solutions of the equations in Lemma 10.2 up to equivalence given as follows: w; = wy = 1, and

a0 =-Y1 qn-allim, s@ =6t )
£(0) = — 32_1> £&(1) = Cs(\/_ 1+331) £(2) = Cs(\/_ 1—351)7
m(0) =0, m(1) =yGi, m(2)=—yGi,
m(0) =0, m(l) =—yGi, n(2)=ydi,
w0 = L =6 ), = G
-1+ o l-VB+2 o 1-VB+2a
2 o I4i o 1=VB-2 o, 1-V3-2
R /JJ(O) - _2—\/37 R :U’(1> - <3(T l’l), R :U’(2> - €3( 4\/3 +l’l),
where x,y € R with
x2+y2:\/§

24

Proof. Since C?? is not an eigenvalue of R, we have 15(0) = 0, and Lemma 10.12 shows that Case II never

occur. Lemma 10.5 shows that the only possibilities in Case I are (wy,ws) = (1,(3) and (wq,wq) = (1, 1).
First we assume that (w1, w2) = (1, (3) holds. Since p2(0) = 0, Lemma 10.7 shows that only the case

(1) of Lemma 10.7 is possible, and we have

1—12n,(0)2 = 2 _3\@,
771(0)2 = ! +5i\/§7
2(2 — /3)

§1(0) = &(0) = — 3V3

Since & = £1(0) f1, 72 = —m1(0) f1, pe = 0, Eq.(10.23) implies

L 2 2 2 2 _ 22-V3) ., 1+2\/§_
=5 = GO)7IANT = 2m O£l _3(T) — 66— =3-2V3,

which is contradiction as we have d = 3 + 2v/3.
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Now we solve the equations for (wy,ws) = (1, 1). Since p2(0) = 0, only the case (2) in Lemma 10.5
with k; = k9 = 1 is possible, and

6410) = &(0) = 30(0) = -

11(0) = n2(0) = 0, 1(0) = 1/3. Since &1, &, M1, 12, 110 belong to the real linear space

{fe€ker(R-1); Jf=f},

there exist real numbers x4, x2, y1, Yo, p satistying &, = &.(0)fo + . f), n = y.f{ for r = 1,2, and
to = po(0) fo + pfi. Since dimker(R — (3) = 1, we have p; = %fl
Eq.(10.13), (10.14), (10.15) imply

2
&1 + ol = 20l = .
Thus

26102 foll* + (0 + DI — 20O ol + NI+ 5) =~

3
and we get 72 + 23 = 2p*. Eq.(10.17), (10.18) imply
py1+ (2p+21)p =0,

(2p + 22)y1 + py2 = 0,
and so either y; = yo = 0 or p> = (2p + 21)(2p + 2). We claim that 71 = 23 = —p, y; = —», and
1
2, .2
Tty = ——.
1 Y1 8\/§
Indeed, assume first that (y1,y2) # (0,0) holds. Then
0 = 3p* + 2(z1 + 22)p + 1175
(21 + 22)* — (21 + 23)
2
_6p® + 4(xy 4 zo)p + (21 + 32) — 2p°
B 2

= 3p2 + 2(1’1 + :Eg)p +

(2p + 21 + 25)°
2 )
and we get z1 + o = 2p. Therefore we have 21 = 2o = —p and p(y; + y2) = 0. Eq.(10.13), (10.14) imply
€117 = Nl&all® + 2(l[m2l* = [lm*) = o,
which shows y? = 3. Eq.(10.13),(10.16) imply

1
dys + 4p* = —dyrys + 4p® = N

which shows the claim.
Assume now that y; = y, = 0 holds. Then 1; = 7y = 0, and the equations in Remark 10.3 are
equivalent to

1
2—_
Il = .

2
1601 = ll&* =

Y

3

N W
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<#,§1>€2(Z3 + (&2, >e2 Z3) — —%.

In terms of p, x1, x5, these are equivalent to

T+ X)) = ——F=,
p(z1 2) 3

which shows the claim again.
Let x = 1 and y = y;. Then &, 7, 11 are as in the statement. It is straightforward to show that they
satisfy the conditions in Lemma 10.2.
Since (w1, ws2) = (1, 1), the gauge group is O(2), and we show that they act on the solutions transitively.
Indeed, it is easy to show that
1 0
0 —1

acts on the solutions as (z,y) — (z, —y). Let

M®=(®M_ﬂw)-

sinf cosf

Note that we have

B(g)
/3 3001 0 0 0 1
__v3-1 0110 1 0 ¢ ¢ 0
1 00 3 1 0 0 0
+h@EX X YY) -yX eV +Y e X)),
where
0 0 1
—1 10/
The first two terms commute with R(@) R(#). Since
R(O)XR(0)™ = cos 20X + sin 20Y,
R(O)YR(9)™' = —sin 20X + cos 20Y,
we have

(ROOSRONX @ X - Y @Y)(RO) @ RO)™)
=cos4I(XRX -Y®RY)+sindd( XY +Y @ X),

(RO)@RONX QY +Y @ X)(R(O) " @ R(O)™)
= SnX ®X -V ®Y)+cosdd(X QY +Y ® X).
Therefore R(6) acts on the solutions as
(x,y) — (zcosdf + ysindl, —x sin 46 + y cos 46).
U
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Remark 10.21. We already know that there is a C* near-group category for Zs with m = 6, and we do not
need to verify Eq.(8.24).

Among the equivalence class of the solutions above, we can choose a representative with y = 0. Such
a solution is invariant under the subgroup of O(2) generated by

(0 5) (1 a)

which is the dihedral group Dg of order 8. Thus there is a Dg-action v on Oy commuting with o, and p
corresponding such a solution. We can perform equivariantization with this Dg-action, and the resulting
category includes a near-group category for G' = Zy X Zs X Z3 with m = 12 as a subcategory (see
Example 13.15).

10.7. The case of G = Z,.
Theorem 10.22. There is no C* near-group category for Z, withm = 8.

There are exactly two non-degenerate symmetric bicharacters for Z,, which are complex conjugate to
each other, and we may assume (g, h) = i to show the statement. For this, there are exactly two a(g),

. _gmi . 3mi
and one of them is a(g) = e~ 7 . In this case we can choose ¢ = ¢4, and

1 0 0 0 1 1 1 1
3mi i
st 0ef 0 0 1 i -1 —i
9 0O 0 -1 0' 1 -1 1 -1 |’
0 O 0 ez 1 -1 -1 i
£(0) f(0)
s ) | et
f(2) —/(2)
f3) e f(1)
Let
1 0 1 1
_ C163 Cmi - C161 : ¢16
. 2cos < ’ . cos 5~ - cos 2>
fo= tan%”gi S0 0 o h= tan%i . h= tangi
—C163 _C16i 41617 Sl 7
2cos 2cos 51 2cos 55

Then Rfy = fo, Rfy = fo, Rfi = Gf1, Rfs = (3 f2, and they are invariant under 7. They form a

(non-normalized) orthogonal basis of £%(Z,) as well as the real subspace of J-invariant vectors. We have

3 3 6v/2

Hfl H2 = T = T = Y
2COSQ% 1+COS% 1+2v2 -3
1l 3 3 62
2||” = - = — = .
QCOSQQ 1 + cos {5 14+2v2++3
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27 i
The other choice of a(g) is a(g) = (—1)%“7 . In this case we can choose ¢ = ¢~ 7, and

1 0 0 0 1 1 1 1
et | 0 —% 0 0 1 i -1 —i
R= o 0 -1 0 1 -1 1 -1 |’
0 0 0 —e7 1 —i -1 i
£(0) (0)
P IO I )
f(2) —f(2)
f3) —e% f(1)
Let
1 1 1
B o 5 e
o 2cos - / 16 o 2cos 3% . 2cos S
Jo tan i | /0T 0 » tan2—ffi Wi —tanglzl—fl
5 5 5
2 cilsb T — (sl 2 Cf)lsﬁg% 2 C(f; 6—121;’

Then Rfy = fo, Rfy = fo, Rfi = Gfi, Rfs = (2 f2, and they are invariant under 7. They form a
(non-normalized) orthogonal basis of /%(Z,) as well as the real subspace of 7 -invariant vectors.

3 3 6v/2

2 _ _ —
111 2c082 3% 14cos2E  —142v2++3

1P 3 3 6v/2
2|l” = — = — = )
2cos? 8T 1+cosiE  —142V2-3
We give a unified argument for Z, and Z X Z, to show that certain cases never occur. Note that we
have d = 4 + 2+/5 in the both cases.

Lemma 10.23. Assume that #G = 4, dimker(R — (}) = 1 forr = 1,2, and there exist f, € ker(R — (3)
satisfying J f. = f. and f.(0) = 1 forr = 1,2. We assume /5 ¢ Q(/3, || f1|I%, | f|13)-

(1) Neither the case (1) of Lemma 10.5 nor the case (1) of Lemma 10.7 occurs.
(2) The case (2) of Lemma 10.5 or the case (2) of Lemma 10.7 could occur only if k1 = —1 and || f1||* =

|.fol|* = 3.
(3) The case (1) of Lemma 10.12 never occurs.
(4) The case (2) of Lemma 10.12 could occur only if || f1||* = || f2||? = 2.

Proof. Note that we have 111 = 11(0) f1 and ps = 112(0) fo. The statements follow from

O + PSP = 5,

for the cases of Lemma 10.5 and Lemma 10.7, and

O + 0Pl = 51— ),

for the case of Lemma 10.12. O
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Proof of Theorem 10.22. Thanks to the previous lemma, the only possibilities are Case I with (w;, ws) =
(1,¢5). We assume (wy,ws) = (1, (3) as the other case can be treated in the same way. Lemma 10.2,(4)
with g = 2 implies

&)1 + 2Im(2)* = 1&(2)]° + 2lm (2)[".
Since dimker(R — (3) = 1, we have & = &(0)f1 = &(0)f1 and 2 = 72(0)f1 = —n1(0) f1. Since
fo(2) = 0, we have & (2) = £1(0) fo(2) and 7:(2) = 71(0) fo(2). Thus

(£(0)* = 21 (0)) (1 fo(2)| = | 1(2)]) = 0

and &,(0) = 4+/21,(0). This shows that the case (2) of Lemma 10.8 never occurs. Since &, = £;(0) f; and
ne = —n1(0) f1, we have & = ¢\/_772, and Eq.(10.23) implies

o Lo ¥ho2
Y 6

pa(0)? [l = e

Now the equations in (1) of Lemma 10.8 imply

VB =2 k1y/1—16m(0)2
B 1 = +v/21,(0),

2 O e VB2

Direct computation shows that for || f1|* as above, these is no 7, (0) satisfying these two equations. []

10.8. The case of G = Zy X Zo.
Theorem 10.24. There is no C* near-group category for Zo X Zy withm = 8.

We use the notation in Example 9.6. Up to complex conjugate, there are exactly two a(g) for each of
(,-)1 and (-, -)2, and we show the statement for these 4 cases separately.

Lemma 10.25. There is no C* near-group category for (-,-); and a(go) = a(g1) =1, a(g2) = —1.

Proof. In this case we can choose ¢ = i, and

1 0 O 0 1 1 1 1 -1 -1 =i —i
R — ;1 0O -1 0 O 1 -1 1 -1 - 1 -1 1 -1 1
9 O 0 —1 0 1 1 -1 -1 9 -1 -1 1 1 ’
O 0 0 -1 1 -1 -1 1 1 -1 -1 1
£(0) f(0)
J f(g0) — —1f(90)
f(g1) —if(g1)
f(g2) —f(g2)
Let
171 0 }1 }1
_Cg_ C_li 2 Cg — 3 C8
fO - 48@ ) f(/) = _Z—Ii ) fl = (2;117 ) f2 = Z“(;—Slﬁ
_.W 5 2cos%r 2c05ﬁ
1 tan —”1 —tan —1
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Then Rfy = fo, Rfs = f3, Rfi = (3f1, Rfa = (3 fo, and they are invariant under 7. They form a

(non-normalized) orthogonal basis of £?(Z, x Z,) as well as the real subspace of 7 -invariant vectors. We

have 5
2
= ——— = 6(2 3
I8P = 5 gz =62+ V),
3
2
= =6(2—-Vv3).
I = 5o = 60— V3)
Since f/(g2) = 0, we can show the statement in exactly the same way as in the case of Z,. O

Lemma 10.26. There is no C* near-group category for (-,-); and a(go) = —a(g1) =1, a(g2) = 1.

Proof. In this case we can choose ¢ = 1, and

1 0 00 1 1 1 1 1 1 1 1
R _1 0 -1 0 0 1 -1 1 -1 _ 1 -1 1 =i i
2 0O 0 1 O 1 1 -1 -1 i i -1 =1’
0O 0 01 1 -1 -1 1 1 -1 -1 1
£(0) f(0)
J f(90) — —if(90)
f(g1) if (g1)
f(g2) f(g2)
Let
j ﬁl ! !
S8 8 : -1
fO = 2f ) fé = \C/_E? ) fl - g(sjlons 125-: ) f2 = 32121018238§8
Qf V2 1 1
—1

Then R fy = fo, R 1y =[5 Rfi = Gfi, Rfs = (2 f2, and they are invariant under 7. They form a
(non-normalized) orthogonal basis of £*(Z, x Z,) as well as the real subspace of 7 -invariant vectors. We
have [ f1[|* = [|.f2]|* = 6.

Thanks to Lemma 10.23, the only remaining case is Case I with (wy,ws) = (1,(G"). We assume
(w1,wa) = (1, (3) because the other case can be treated in the same way. Eq.(10.23) implies

(&0 = 2 (0|12 = 3ua (021 fo]* = —

and so
312(0)* — £1(0)* 4 21 (0)? =

This shows that case (2) in Lemma 10.8 never occurs because the left-hand side would be negative in that
case. We assume that the case (1) in Lemma 10.8 holds. Then we would get

NG

V5 —2
12

= 311(0)? — £(0)* + 2m<0>2

12
B 5—2 \/1—16771 V52 miy/1-16m(0)%, )
_ —3+2V6 B (\/3 — 2) kiy/1— 16771<0)2
12 4 7
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and

/T = 167, (0)2 = 3+—3ﬁ

This is contradiction.

> 1.

O

Up to group automorphism there are exactly two a(g) for (-, -),, the one given by a(go) = a(g1) =

1,a(go) = —1, and the one given by a(go) = a(g:1) = a(ge) = —1.

Lemma 10.27. There is no C* near-group category for (-, ), and a(go) = a(g1) = 1, a(as) = —1.

Proof. In this case, we can choose ¢ = 1, and
0 0

R ==

1

1
2 1 -1
1

SO O

o O = O

O = O
)

Let

fo=

QO [— =
St
I

11
1 - 1
1 -1 2
1 1

f(0)

31

1 1 1 1
1 1 -1 -1
1 -1 1 -1}’
-1 1 1 -1
1
-1
-1
—\/gi

Then Rfo = fo, Rfy = fo Rfi = Gfi, Rfs = (2 f2, and they are invariant under 7. They form a

(non-normalized) orthogonal basis of £?(Z, x Z,) as well as the real subspace of 7 -invariant vectors. We

have [ fi]|* = || f2]|* = 6.

Since f((g3) = 0, we can show the statement in exactly the same way as in the case of Z,. 0

Lemma 10.28. There is no C* near-group category for (-, ), and a(go) = a(g1) = a(g2) = —1.

Proof. In this case, we can choose ¢ = —1, and
10 0 O 1
1o -1 0 o0 1
R==510 0 -1 0 1
0o 0 0 -1 1
q%
f(90
J f(g1)
f(g2)
Let
0 0
1 1
fO = ) f(l) = 2
C3 3
& G
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Then Rfo = fo. Rfy = f& Rt =GhH. Rz =G feand T fo=—f0, T = —fo. Tfi = f1, T f2 = fo

They form a (non-normalized) orthogonal basis of £%(Zy x Z) as well as the real subspace of 7 -invariant
vectors. We have || f1]|* = || f2]|* = 2.

Lemma 10.23 and fy(0) = f/(0) = 0 imply that the only possible case is the case (2) of Lemma 10.12.
Thus there exist p € C and x € {1, —1} such that uy = pfo + pf}, and

K \/_ — K \/3 — 2
=pfo+Dofo+ (7 +—F7 -
Let p; = p(i +PC; ' € R. Then
K. \/5 -2
/}“(O) = 517 M(gi) pi + 6 )
VE—2 K, VE—2 K
RIU’(O) - 4 - 117 RN(QZ) 1 12 + Zla
\/3 -2 K \/5 -2 K
2 _ k. 2 (o N_ . _VoI—a K.
R7u(0) = — b Roulg:) =pi 3 e
Now Lemma 10.2,(4) with g = g; is equivalent to
V5 -2 V5
10.50 2 Z. 2= VO
(10.50) p; o Pt (el = 3¢,
V5-2 V5
(10.51) [€(90)” + 2In(9:)|* + P} + —5—pi = 5~
V5 =2
(10.52) §(gin(gi) = (pi — —5—)n(g:),
V5 —2
(10.53) n(9:)* + &(9:) (pi + ——) = 0.
From Eq.(10.52) and (10.53), we have
- - V5 —2
0 =n(g:)*n(g:) + &g )m(gi) (s + —5—)
V5 —2 V5 —2
=n(g:)*n(g) +n(9:) (i = —5—)Pi + —5—)
V-2  9-45
= n(g:)(In(9:) > + v} — pi — )-
6 18
and 77(g;) = 0. Eq.(10.53) implies either £(g;) = 0 or p; = —(+/5 — 2)/6, which in either case is not
compatible with Eq.(10.50), (10.51). O

11. 281 SUBFACTORS

Let n and [ be natural numbers. A bipartite graph is said to be 2]'1 if the following conditions hold:

(1) the set of even vertices is {v;}/-y U {v,},
(2) the set of odd vertices is {w}], U {wx},
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(3) the only non-zero entries of the incidence matrix " are

Fvi,wi = Fwi,vi = 17

Fwi,vp = va,wi = la

Loy = Do = 1
Let N C M be a subfactor whose principal graph is 2'1. More precisely, by the principal graph,
we mean the induction reduction graph for M — M and M — N sectors. Then the vertices {v;}7~
correspond to automorphisms, forming a group G in Out(A/), and we denote them by {a,} je. We call
such a subfactor 21G1. When [ = 1, we just call it a 261 subfactor. For example, the Ej subfactor is %21,
Let p be the endomorphism of M corresponding to v,. Then {ay},eq U {p} generate a C* near-group

category for G with m = [n. In particular G is always abelian. In this section, we determine the structure
of 21 subfactors in terms of the corresponding C* near group categories.

0

id——t—=P=—=02—0>

e
FIGURE 1. 2531 subfactor

Let N C M be a 2{'1 subfactor and let {, } ;e and p be as above. We may and do assume o, 0 p = p,
and we use the same notation as in the previous sections for the restriction of v, and p to the intertwiner
spaces (a, p?), and (p, p?). Let ¢ : N < M be the inclusion map. Then odd vertices {w;}!"-)' correspond
to {ay 0 t}sec. Let m : N — M be the homomorphism corresponding to w,. Direct computation shows
d(t) = d/y/n, d(7) = \/n, and [p] = [n7]. Since p is self-conjugate, we have [p| = [/7| too. Since
lay o w] = [7] and d(7) = \/n, we have

7] = Pl

geG

From [p| = [¢7T], we may assume p = (7 by replacing p with Adv o p and a, by Adv o oy 0 Ad v* for
a unitary v € M if necessary. This means that we have M D N D p(M).

Lemma 11.1. Let the notation be as above.

(1) N = p(M) vV{U(9)}gec-
(2) The dual inclusion of M O N is isomorphic to M® D p(M), where M is the fixed point subalgebra

M* ={zx e M; a,(x) ==z, Vg € G}.

Proof. (1) Since [T o vy = [7], there exist unitaries u, € N satisfying 7 o a, = Ad u, o 7. On the other
hand, we have

AdU(g)op=poa;=tomoa,=t0Adu,oT,
and u, is a multiple of U(g). This means that U(g) € N, and we have the inclusion relation N D p(M) Vv
{U(g)}4ec- Let po be p regarded as an isomorphism from M onto p(M ), and let 3, = ppoa,op, ', which is
an outer action of G on p(M). Since p(M )V {U(g) }4ec is identified with the crossed product p(M) x5 G,
its index in M is d?/n, which coincides with [M : N]. Thus we have the equality N = p(M)V{U(9)}4ecc-
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(2) Since [p] = [n7], we may assume p = 7 o T by replacing 7 with an equivalent sector if necessary.
Since [a; o 7] = [r], there exist unitaries v, € M such a, o m = Ad v, o 7. On the other hand, we have
ay 0 p = p, and so v, is a scalar and «, o m = 7. Since d(w) = y/n, this implies that the image of
coincides with M®. Thus the dual inclusion N O 7(V) is isomorphic to M* D p(M). O

Theorem 11.2. For an abelian group G, there is a one-to-one correspondence between the isomorphism
classes of 271 subfactors and the set of equivalence classes of a C* near-group category for G with m = In.

Proof. 1t is obvious that isomorphic 271 subfactors give rise to equivalent C* near-group categories.
Moreover the previous lemma shows that if the two resulting C* near-group categories are equivalent,
the two 2¢1 subfactors are isomorphic.

It remains to show that every C* near-group category for G with m = In gives rise to a 2’1 subfactor.
We may assume that such a category is realized by {¢, },c¢ and p acting on a type III factor M, and we
use the same notation as before. We set N = p(M) V {U(g)},s- Then it is identified with the crossed
product p(M) x G, and its index in M is d*/n = 1 + Id. Since p(M) is irreducible in M, so is N too.
We denote by ¢ the inclusion map ¢ : N < M. All we have to show is dim(p, :7) = [, or equivalently
dim(¢, pt) = I, which will show

(] = [id] ® {[p].
Since (¢, pt) C (p, p*), we have
(t,p0) ={T' € K; Vg € G, TU(g) = p(U(9))T},

and in view of Eq.(3.30), we have

(t,00) ={T € K; Vg € G, (j1042)U(g)(j10j2)"T =T},
which shows dim(¢, pt) = [. O

Grossman-Jordan-Snyder [22, Section 4] discussed Z,-graded extensions of near-group categories C in
the case of prime m = n. They constructed a non-trivial Z,-graded extension of C under the assumption
that the outer automorphism group Out(C) is trivial and the corresponding 291 subfactor is self-dual.
We will determine the structure of Out(C) in Section 13. The second condition turns out to always hold.

Theorem 11.3. Let N C M be a 271 subfactor whose associated C* near-group category satisfies the
following condition: the operator A(g) in Lemma 7.4 is a scalar for any g € G. Then N C M is self-dual. In
particular, every 2¢1 subfactor is self-dual.

Proof. We use the same notation for a 2¢1 subfactor N C M as before. Let /' : p(M) < M® and

K : M < M be the inclusion maps. Since p(M) C M®, the restriction of p to M makes sense as

an endomorphism of A/“, which will be denoted by p'. Since a,(U(h)) = (g, h)U(h), the restriction of

AdU(—g) to M makes sense too as a G-action on M“, which will be denoted by . By definition, we

have pok = ko p'and ko a; = AdU(—g) o k. We also have aj, 0 p' = p as AdU(—g) o p = poay.
We first claim that that p/ is irreducible. Indeed, we have

(' p) =(kop kop)NM* = (por,por)n M,

and we first determine (p o %, p o k). Since AdU(g) o p = p o oy, we have U(g) € (po k, po k). On the
other hand,

dim(p o k, p o k) = dim(kF, p*) = dim(@ g, p°) = n,
geG
and so (p o k, p o k) = span{U(g)}4ec. This shows that p’ is irreducible.
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Next we observe
(V] = [id] @ 1[p],
or equivalently dim(¢/, p’ o /) = [. This follows from
(0 o) =(p,p)NM* ={T € K; Vg€ G, V(g)T =T}.

Now it suffices to show that the two categories generated by {a,}seq U {p} and by {a} },cc U {p'}
are mutually equivalent, and for this we show that the their Cuntz algebra models are the same.

Let
1
Sog=—7=Y S,eM"
\/ﬁ geG
Then for any x € M“, we have
1
/2 / /
pe(x)S) = —= Z Sqog() ngx So,
\/ﬁ geG \/_ geG
and S}, € (id, p?). We set
1 _
Sy = ay(Sp) > U(=9)SuU(=g)" = —=> (g, h)SuU(9),
! \/_ heaG yere

which is in (a7, p”*). Note that we have

> Spal(x S’*:— > gk —h)SaS;=> SuaS;.

geG g h,keG heG

On the other hand,

ZS’ L(@)S) > Ty(en)U(g)p (@)U () Tyler)".

Since T,(§)U(g) € M?, we see that {T,(e,)U(g)},, form an orthonormal basis of (o', p'*). Since
p(U(— )) € M*,and Ad p(U(—g)) o p' = p' o aj, we set U'(—g) = p(U(g)). Then thanks to Eq.(3.30),

we have

By assumption, the operator A(¢g) in Lemma 7.4 is a scalar a(g). We choose a square root of a(0) € T
and fix it, and set

a(0)'/? /
736 = LTS U h) € (o, o) 0 ()
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Then {Tg’(er)}g,,« is an orthonormal basis of (o, p'?), and we have a’g(T/L(eT)) = <g,h>T;(eT) and
U'(g)Ty(e,) = Ty, (er).

For T € (p/, p'*), we defined j{(T") and j5(T") as in the definition of j; and j, by replacing p and S,
with p’ and Sj. Then

JUT(€) = VAT, (&) p/(S)
WO AV S 1 by T ) ol5)

= OGN S o by € U T b

h,keG

_ MO0 S (g myU ) T DU )

n

h,keG
_ M S alk + h) (g, YT (JEU (k)"
h,keG

Since

we get

which shows that j| has the same form as jj.
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For 7}, we have

HTE) = Va(T/()S))
_ OV Sy TS

a(0)"Y2q |
= A S gm0 () e (T (€))
€a(0)~1%a ’
= O S g ) o U (1)) (O )
h,k,p

ea(0)~2q
_ % Z(g, h)p(U(h)*)To(C* JE)

— O aG) 5 (T (C U (B

NG
ea(0)~4/?2
\/ﬁ

~—

~—

a(g —h)T_p(C*JEU(h)".

=[]

On the other hand,

En Z VIT(C*JE)
k
ca(0)1/2 -
_ <2> S Tg+ b Rl T (C T U (R)
f ;
_ ca(0)'” R)TH(C*JEU(h).
v 2; -

Thus 7 has the same form as js.
Now it suffices to show that B}, (£) for p takes the same form as the original one. Note that we have

Ty (er)p(To(eu) Toler) = alg) Y bia(g)Tg(es)-

S
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On the other hand,

1/2

Tg( er)” P(T,(eu))T’ (e;) =

ZT’ &) p(Th(e,)U(R))Ty(e;)

1/2

= S LT VeV (T
1/2

=S L Tl olTulen)Tien
1/2

= n\/— Z a(g + h)a(h){q, g + h){p, 1)U (a)*Ty(er)* p(To(en)) Tp(e)U (p)

:__——EQEZm—p—gmx%mU@r%w@»wUM%»%@ﬂU@%

where we used

Thus we get

Ti(e, ) plTi(en)) Tiler)
G 1/2a
= O S 4. )+ 9Ty e pTuleu) Tl U )

p

a(02a(q)2
:=AQVEQL§:@ﬂm@+yﬂﬂﬂﬂ+mq¥@9U@>

p,s

0)1/2
= \/— Zb” T,(e)U (p)
(9) th:u 9)T

which finishes the proof. U

12. ORBIFOLD CONSTRUCTION I (DE-EQUIVARIANTIZATION)

Orbifold construction for subfactors was first introduced in [17] to construct new subfactors from
given ones with group actions (see [38] too). Purely categorical versions (see [4], [11], [53] for example)
of it are now called equivariantization and de-equivariantization, which are dual operations to each other
via Takesaki duality. In the final two sections, we systematically investigate these operations for 2{ 1
subfactors and near-group categories in the irrational case.

Victor Ostrik is the first to observe that a near-group category for Zs x Zgs with m = 9 produces the
Haagerup category via de-equivariantization (see Example 12.13 below). In this section, we systematically
pursue this kind of phenomena. We concentrate on the case with m =
sense for the case of m > |G| under a mild assumption. A C* near group category in this class is
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completely described by the data ({-, ), a, b, ¢) as in Section 9. The pair ({-, -), @) is often called a quadratic
form on G in the literature, where @ is the complex conjugate of a.

Let N C M be a 2¢1 subfactor whose even part is a C* near-group category given by o and p with
oy 0 p = p. We assume that it has an invariant ((-, -), a, b, ¢), and we use the same notation as before for
the Cuntz algebra model. Now Eq.(3.30) takes the form

= SuySi+ Y _a(h)a(h — g)T,U(g)T5_,
heG heG

12.1. Untwisted case. We fix a subgroup H C G, and consider the crossed product M x, H, which is
a factor generated by M and a unitary representation {\,} of H with the relation A,z = ay,(x)\, for

x € M. Then we can extend p and o to M x H by setting p(\,) = a(h)U(h)Ap, and &, () = (g, h) Ap.
Note that we have Ad(a(h)U(h)An)(p(2)) = p(an(x)) for z € M, and

(a(R)U(R)An)(a(k)U (k)Ae) = a(h)a(k)U (h)an(U (k) Ap+k
= a(h)a(k)(h, EYU(h + k) Mgk = a(h + kYU (h + k) Ay

Lemma 12.1. With the notation as above, we have the following for allz € M x,, H.

= Sylg(@)S; + Y Typ()T;

geG geG
pody=AdU(g)o

Proof. It suffices to show the statement for z = \;,. For z = )\, the left-hand side is a(h)?p(U (h))U (h) A,
and

(W)U ()M,
(W)T, A = (k) (b, g)T; p(U (1)) Ty

which show the first statement.
For the second statement, we have

and on the other hand,

O

For a subgroup H C G, we set H- = {g € G; (g, h) = 1}. Since Ad \} o &y, is trivial on M, it comes
from the dual action of a.. If moreover H C H*, it is trivial, that is &, = Ad \,,.

Lemma 12.2. If H C H*, then (p, p) = {\u} e

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 318



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

Proof. Note that we have (p,p) C M %, H N p(M)'. Since oy, o p = p, and p is irreducible, we get
M xo HN p(M) = {\}}cy. Now we have

(2, 0) = {Anthen VPN Yher = {Anthen N {a(R)UR) Ak ren,
which is again {\, }} .5 because \;, commutes with U (k) thanks to
an(U(k)) = (h, k)U(k) = U (k).
U

For the character group H of H, we use the additive notation, that is, for x1, 2 € H, we denote
(x1 + x2)(h) = x1(h)x2(h). For x € H, we denote by e, the corresponding minimal projection in
{An}) ey that is

ey = \/EZX

heH

p) = @(Cex,

xeH

Assume H C H~+. Then since

the endomorphism p is decomposed into irreducible components o, parametrized by x € H. More
precisely, we choose an isometry V\, € M X, H for each x € H satistying V\V = e,, and set
oy (r) = V7 p(x)V,. For simplicity, we denote o = 0¢. Then we have

o] = @ (o]

Note that {0, }, s are all inequivalent.
Recall that we may assume N = p(M) V {U(g)};-q, and N is regarded as the crossed product of
p(M) by the G-action py o a,, o p,*, where py is p regarded as an isomorphism from M onto p(M).

Since ay, (U (h)) = (g, h)U(g), the restriction of a to N is identified with the dual action for this crossed
product, and in consequence o on N is outer too. Thus N x, H is a subfactor of M x, H.

Theorem 12.3. Let x : N %, H — M x, H be the inclusion map. Then
= [id] & oyl
xeH

Proof. Since [M X, H : N x, H| = [M : N|, it suffices to show that o, is contained in ~%, or equivalently

(K, Jx’{) # {0}

Let ¢ : N < M be the inclusion map. In the proof of Theorem 11.2, we showed
(L,p0) ={T € K; Vg € G, (j10j2)U(g)(j10j2)"T =T} = C(j1 0 j2) To.
Note that we have

(71 072)U(9) (51 0 J2)" = a(g)U(=g)V(=9g).
We claim that (j; o j2)*To A\, = p(An) (41 © j2)*Tp holds. Indeed, the right-hand side is

a(h)U(h)An(j1 © j2)"To = a(h)U(h)an((j1 © j2)"To) An = a(R)U (h)V (h)(j1 © j2) " ToAn,

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 319



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

and the claim follows. Now we have V' (j1 0 j2)*Ty € (k, 0y #). It remains to show V*(j 0 j2)*Ty # 0,
which follows from

(Vi (10 52)"To) Vi (j1 0 j2) " To = ] ZX(h)TOJI o jaAn(J1 © j2)* Tt
heH

Lo~
=T > x(W)Ty v 0 dacun((r © j2) o) M

heH

Z X(R)T5 g1 © jaV (h)(j1 © j2) ToAn
heH

b
| H|
1

[H|
O

Remark 12.4. From Theorem 11.3 and its proof, we can see that the subfactor N x, H C M x, H is
self-dual too.

To determine the principal graph of N x, H C M X, H, it suffices to determine the fusion rules for

the categories generated by {0 }, -
For g € G, we denote by y, € H the character of H determined by x,(h) = (h, g). Since every
character of H extends to a character of GG and the bicharacter (-, -) is non-degenerate, the map G > g —
Xg € H is a surjection, giving an isomorphism from G /H~ onto H.
Direct computation shows that &4(e,) = ey—y,, and e,U(g) = U(g)ey+y,. This implies [a 0] =
[0y—,] and [0\ dy] = [04y,]. In particular, when k € H*, we have

[y ] = [oyu] = [oy].
Theorem 12.5. Assume that H C H*. Then there exists g, € G witha(h) = (h, g,) forallh € H, and
ollo] = @ [y @ H/H P [ag0],
keHL/H geG/H+

[agllo] = [o]la—g].

Note that since 6, 14] = [a,] for any h € H and [ay0] = [0] for any k € H™, the above expression makes
sense.

Proof. For hy, hy € H, we have
a(hl)a(hg) = <h1, h2>&(h1 + hg) = Cl(hl + hQ),

and the restriction of a to H is a character. Thus there exists g, € G satistying a(h) = (h, g,) for any
h e H.
We choose a transversal {k; };cpr g C H L for H. Note that we have

o*(z) = Vo p(Ve) 5 ()p(Vo) Vo
= Vi h(Ve) Sybig (2)Sip(Vo) Vo + 3 Vo p(Vi ) Tup(2) T, (Vo) Vo,

geG geG
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and the range projection of p(Vj)V} is

p(Vo)eop(Va)™ = p(VaVs )eo ] =S U
heH
1

| Z €p = | Z € Xh = W@o Za(h)U(h)

heH heH heH
We have
1

TH > a(h =T > (o ga+9)Sy = 11 (9a + 9)€0S,,

heH heH

where 1. is the indicator function of H+. Now

D Vo alV)Sedg(2)S; p(Vo) Vo

geG

= D Ve (Ve eoSi—g, g, (2)Si_g,e0(Vo) Vo
keHL

= Z ZVO*P ) €0Shtki—ga Oh-+i—ga () Shi,— g, €0P(Vo) Vo
ieHL+/H heH

= > > Ve a(Ve)eo Sk, —g. kg, () Sk, Areop(Vo) Vi
i€HL-/H heH

= H| Y Vya(Ve)Shimgahi—g (2) S, g, (Vo) Vo

i€cHL/H

It is straightforward to see that {\/|H |V p(V;')Sk,—g, ficut/m are isometries with mutually orthogonal
ranges.
For the second term we have

> VoAV Top(2) Ty 5(Vo)Va

geG

H Z Z a(ha) Vg (Vg )eoU (ha)Typ( )T, U(ha)"eop(Vo) Vo

9g€G hi,ho€H

1 TNk * ~ * -
= | i 2 alh)alh)VEAVE ) T ATy M (5)Vo
gEG hl h2 h5 hy€H

a(h)a(he)(hs + ha, VG P(VE ) Tg—ny Ansna D) Ty, (V) Vo
gEG h1 hg h3 hacH

a(ha) Vg DV ) Ty e, D) Ty, (Vo) Vo

gEG h1,ho€eH

PZ > alh)aho) Vi BVe) Tyn Vo, 0, @)V T, 5(Vo) Vo
9€G hy,ho€H
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We choose a transversal {g;}jcq/nr C G for H*. Then we get

Z Vo (Ve Top ()T 5(Vo) Vi

LYY Y et

jeG/HJ- i€HL /H ho,h1,ho€H
* * * *
X ‘/0 p<v )ng+ki+h0*hl Vf Xg; 0-7)(9J ( )fog Tg]+kl+h0 hQ (‘/0)‘/0

,H’Z Z Z a(hy)a(hz)

JEG/HL i€eHL /H h1,ho€H
X VE) P(VO )ng"rki_hlv_ng T —xg; (x)v—*xgj T;j+k1;—hgﬁ(v0)v()~

Direct computation shows that

\/’F Z VE) P VO gj+k; +n V- Xg; }JEG/HL i€EHL/H>

heH

is a family of isometries with mutually orthogonal ranges. Therefore the statement is proved. U

Remark 12.6. (1) The above theorem in particular shows that o is self-conjugate if and only if a(h) = 1
for any h € H. Since a(h)a(h) = (h, h) = 1 for h € H, we have 2g, = 0, and non-trivial g, could occur
only if H is an even group.

(2) The original near-group category is Morita equivalent to the fusion category generated by ¢ and the
dual action & of .

A subgroup H C G is called Lagrangian if H = H~ and the restriction of a to H is 1 (see [13]).

Corollary 12.7. If H is a Lagrangian, we have

[o]fo] = [id] & €D [dy0]

geG/H
[ag][o] = lo][a—g]-

In [32], we gave a Cuntz algebra construction of the fusion categories with the above type of fusion
rules, other than near-group categories, which was further pursued in [15]. In a forthcoming paper, we
systematically investigate such fusion categories for arbitrary finitely abelian groups. In this note, we
just give a converse construction of the above corollary in the case of odd groups.

Let R be a type III factor and K be an odd abelian group, which will play the role of H as well as
G/H. Assume that we are given a map [ : K — Aut(R) inducing an injective homomorphism from K
into Out(R), and irreducible o € End(R) satisfying

[Bil[o] = lo][B-x];

[o]fo] = [id] & { DB [o]

keK
Note that the Frobenius reciprocity implies that { 3,0 }rck are all inequivalent.
Since K 3 k — [Bx] € Out(R) is a homomorphism, there exist u(ky, k) € U(R) satisfying
Bry © Br, = Adu(ky, ko) © Bk, 1k, The associativity

6161 © (Bk’z © 51@3) = (/Bkl © Bkz) o /Bks
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implies that there exists a 3-cocycle w € Z3(K, T) satisfying
Bkl (u(kz, kg))u(kl, kQ + k'g) = w(kl, kg, kg)u(lﬁ, kg)’u,(/ﬁ + kg, kg)

Recall that the opposite algebra R°PP of R is a linear space R equipped with a new product z - y = yx.
To realize R°PP as a von Neumann algebra, we identify it with the commutant R’ of R under identification
of x € R and Jrz*Jr € R where Jp is the modular conjugation of R. We denote by j the anti-linear
multiplicative map : R 3 = — JgxJgr € RPP, and define 5;""(z) = jo B 0 j~ € Aut(R°P). Let
R =R® R, lety, = 0, ® 5" € R, and let v(ky, ko) = u(ky, k2) @ j(u(ki, k2)). Then y and v satisfy
the 2-cocycle relation

rykl (U(k27 k3))v(k17 k2 + k3> - U(k17 kg)?](kl + k27 k3)7

and we can construct the twisted crossed product M = R x,, K, that is a factor generated by R and
unitaries {\} }rex satisfying A\jz = v (2) A} for v € Rand A} A}, = v(k1, k2) A} 4y, Let K : R < M be
the inclusion map. Then the fusion categories generated by {x (0 ® id)& } ek is nothing but the quantum
double D¥(K) (see [31]).

Let

Cd(kg, kl? k3)
(kl, ks, k’s)w(kz, ks, kl) .

Ok, (K2, k3) = -

Then it is known that 0 is a 2-cocycle for any fixed & € K (see [7], [8]). We assume that 0}, is a coboundary
for any k£ € K, which automatically holds for cyclic groups. This is equivalent to the condition that
D¥(D) is pointed, that is, every simple object of D*(K) is invertible, which in our situation means that
B ®id extends to M as we see now. Thanks to this assumption, there exists v, (k) satisfying

On(K' k") = v (K + K" v (K (K7).
Lemma 12.8. Let the notation be as above. The automorphism (5, @ id on R extends to M by
Bre(Ap) = vi(K) (u(ke, K )u(K k)" @ 1)AL.
Proof. 1t suffices to verify the following two relations:

v (k") (u(k, K )u(K', k)" @ DAY (B ® 1d) (2)
= (Br ®1d) o v (x) v (k") (w(k, KNu(k' k)" @ 1)\, Vo e R,

v (k') (u(k, K u(k' k) @ DAL (k") (u(k, Ku(k”, k)* @ 1)AY,
= vp(K' + &) (Br @ 1) (w(k', k")) (u(k, K + K" )u(k' + K", k)" @ 1)AL o

The first one is easy to verify and the second one is equivalent to

v (K v (K" Yu(k, KN u(k' k) B (u(k, K" u(k” k) )u(k' k")
= vp(K + k") Br(u(k + K" ))u(k, K + K" u(k' + k" k)*.

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 323



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

Using the defining relation of w, we get
Bu(ull Rk €+ Kull + Ky
w(k, k' K" ulk, Ku(k + K K" )u(k" + K" k)*
wk, k' K u(k, Ku(K k) (w(k', k)u(k + K E")u(k + K k)*
= w(k, k', KKk, KYu(k, KYu(k', k) B (ulk, K Nulk' k+ K u(k' + k", k)*
= w(k, k' KoK kK w(k K E)u(k, K u(k, k)* B (w(k, K u(k”, k) )u(k'k")
— 0O R, KK, k)" B, K Yu (K, k) YR,

which shows the statement. O

Note that the group of the equivalence classes of the simple objects of D*(K) is {[x © 4y ]} heK. ye Ko
where 4 is the dual action of y. We denote this group by GG. Thus G is an extension:

0K —>G—K-—0.

Theorem 12.9. Let the notation be as above. The fusion category generated by k(o ®1id)R is a C* near-group
category for G withm = [| K |2,

Proof. Let p = k(o ® id)R. Then p is irreducible because
dim(p, p) = dim(Rk(0 ® id), (0 ® id)Rk) Z dim(Bro @ B, 0By @ BIT) =
kk/ €K

For p?, we have

[0°] = k(0 @ id)Fr(c @ id)F] = P[(oBio @ BPP)R] = Plk(B-_ro” @ B)F]

keK keK
= @[F&%(ﬁ—%a? ®1id)R] = ED[ (B_ox @ id)R] @ @ (B_aBo @ id)A]
keK keK k' €K
= PB_arw] @ 1| K| P k(Bro @ id)R].

keK ke
where we used x o 8, = f3), o k. Since K is an odd group, the first term is

keK, xeK

For the second term,
dim(k(Bro ® id)R, k(o ® id)R) = dim(Rkr(fro ® id), (0 ® id)Rk)
= > dim(Biwo @ BFP), (0B @ BEP)) = > dim(Bywo, B_po)

k' k"eK k'eK
= Z dim(Bg o0, 0) = 1.
k'eK
This shows ~
1= D B + UK.
keK, xeK
O]
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Remark 12.10. Let C, be the fusion category generated by o, and let C, be the near-group category
generated by p in Theorem 12.9. Then the above construction shows that C, is categorically Morita
equivalent to C, X Vec%., where Vec, is the category of K-graded vector spaces with twist w. In
consequence, we have equivalence Z(C,) = Z(C,) X Z(VecY.), where Z(C) denotes the Drinfeld center
of C. This explains why the modular data of Z(C,) factors as the product of those of Z(C,) and D¥(K)
in Example 12.13 and Example 12.14 below (see [15, Section2 and Section 3] and [16, p.636]).

Example 12.11. For G = Zs X Zs, there is a unique C* near-group category with m = 4, and a non-
trivial subgroup H with H C H* is unique, which is H = {0, g3} in Example 9.6. The subgroup H is
Lagrangian, and by de-equivariantization, we get the even part of the A7-subfactor.

Example 12.12. There are two C* near-group categories for G = Z,4, which are mutually complex
conjugate, and H = 7Z, satisfies H = H~, though it is not Lagrangian. In this case, de-equivariantization
by H gives two 1-supertransitive subfactors constructed Liu-Morrison-Penneys [41]. In fact they already
observed that the two subfactors they constructed give rise to the 2241 subfactors by equivariantization
(see [41, Section 4.3]).

Example 12.13. Let G = Z3 x Z3. Evans-Gannon [16, Table 2] showed that there is a unique C* near-
group category for G = Z3 X Z3, and the quadratic form in the solution is given as ((z1, z2), (y1,%2)) =
G a(xy, 1p) = C:f%*y%. There are exactly two Lagrangians: H; = {(0,0),(1,1),(2,2)} and
Hy, ={(0,0),(1,2),(2,1)}, and they produce two different fusion categories by de-equivariantization. A
priori, two different subgroups could produce equivalent categories, but this is not the case now because
of the following reason. In the case of H = H;, we have

0%) = lid) & €D [inol,
heHa
and & restricted to H, is an action, and therefore there is no third cohomology obstruction for the Zs
part. When H = H,, the situation is the same. In fact, Grossman-Snyder [21] showed that there are
exactly two C*-fusion categories with the same fusion rules as the Haagerup category (the even part
of the Haagerup subfactor) and with trivial third cohomology obstruction for the Zs part. Thanks to
Theorem 12.9, which is the converse construction of Corollary 12.7, the two groups H; and H; indeed
produce two different fusion categories.

Example 12.14. Evans-Gannon [15] showed that there are exactly two C* near-group categories for
Zg, and they are complex conjugate to each other. In this case, the subgroup H =< 3 >= Zsis a
Lagrangian, which produces two more fusion categories with the same fusion rules as the Haagerup
category. The Zs part of the resulting fusion categories is generated by &4, and its third cohomology
obstruction, known as Connes obstruction [5], can be easily computed as follows. Indeed, we have
&3 = Az and @;(A3) = (1,1)3\3, which shows that the Connes obstruction is either (3 or (;'. The
existence of these two categories has been expected since Evans-Gannon [15, Question 5] obtained the
corresponding hypothetical modular data of the Drinfeld center.

Example 12.15. It is known that there exist fusion categories as in Theorem 12.9 for G = Z,,n = 5,7, 9,
with [ = 1 and trivial third cohomology obstruction on the group part (see [32], [15]). It follows that
there exist C* near-group categories for G = Z,, x Z,, withm = n? forn =5,7,9.

12.2. Twisted case. In the tensor category setting (see [11]), de-equivariantization with respect to a
subgroup H C G can be defined for an algebra structure of the object

Do
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because it is known that o, has a unique half-braiding (see [32, Lemma 6.1]), and hence «, uniquely lifts
to the Drinfeld center. In operator algebra setting, an algebra structure of the above object corresponds
to a lifting of {[a|}her C Out(M) to a group action. In the case of near-group categories, we have a
privileged lifting determined by oy, o p = p, and we essentially discussed de-equivariantization with this
algebra structure in the previous subsection. The other algebra structures are in one-to-one correspondence
with H%(H,T) \ {0}, and the corresponding operation in terms of operator algebras is cocycle twisted
crossed product.

Let G, M, p, and « be as in the previous subsection. Now we do not assume that H satisfies the
condition H C H™'. Instead, we assume that H = Z%S for a natural number s, and that the restriction of
(-,-) to H is non-degenerate. We further assume that there exists a 2-cocycle w € Z?(H, T) satisfying

w(h, k)w(k,h) = (h, k) € R.

Let M ., H be the twisted crossed product, that is, the von Neumann algebra generated by M and
unitaries {\ } e satisfying Az = oy (2) Ay for any x € M and X Xy, = w(hy, he) XS L, As before
we can extend p and a to M X, H by setting p(\) = a(h)U(h)/Vh’, and Gy (Ny) = (g, h)\y. As in
Lemma 12.1, we have the following for all z € M x, H.

= Syy(2)Ss + Y T,p(x)T;
9eG geqd
pod,=AdU(g)o
We claim that Ay commutes with p(\Y) for any h, k € H. Indeed, we have
MPOAR) = Aa(R)U(R)AY = a(k)an(U (k)X AR
= a(k)(h, k)w(h, YU (k)X = a(k) (b k)w(h, k)w(k, B)U ()N
= BN = O
Lemma 12.16. Let the notation be as above.

(1) ap, = Ad)\wforanyh € H.
@) (5, p) ={ X Yhen-

Proof. (1) Note that the restriction of (-, -) to H is real-valued. Since Ad A" o &, is trivial on M, it suffices
to show

AA XS 0 Gp(A2) = (B, YAEAENS® = (B, BV (h, B)AZ, NS
— (h, BYw(h, K)ok, A AENS® = (h, kYA = A%,
(2) As in the proof of Lemma 12.2, we have (M X, H) N p(M)" = {\/}} oy, and
(p: £) = {3 Hhen NP Yeen = {X hen-
U
Since (-, -) restricted to [ is non-degenerate, the twisted group algebra { A’} _;; is isomorphic to the

full matrix algebra Ms:(C). Thus (2) above shows that there exists an irreducible o € End(M X, H)
satisfying [p] = 2°[o]. On the other hand we have

[ﬁz] :@[O‘g]@n = |H| @ ay] @ n2°[o].
g geG/H

This implies
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Theorem 12.17. Let the notation be as above. Then

o’ = €D la,) & 2°|G/H][0].

geG/H

In particular o generates a C* near-group category for G/H withm = 2°|G/H|.

We have already seen in Subsection 10.6 that there are exactly two C* near-group categories for
Zs with m = 6 (resp. 2%31 subfactors), and there is a Dg-actions on each of them, where Dsg is the
dihedral group of order 8. We will see in Example 13.15 that equivariantization by this action produces a
fusion category containing a C* near-group category for Zy X Zy X Zz with m = 12 (resp. a 222*22xZ3]
subfactor). Theorem 12.17 should be considered as a converse construction of this equivariantization in
spite of a superficial discrepancy: twisted crossed product is used instead of ordinary crossed product, and
Zy X 7o is not the dual group of Dg. The first point can be easily fixed because it is well-known that every
outer cocycle action of a finite group is known to be equivalent to an ordinary action. It means that there
is a family of unitaries {wp, }req in M satisfying wpap (wy) = w(h, k)wp,x. Now the twisted crossed
product in Theorem 12.17 is identified with the ordinary crossed product by the new action Ad wy, o a,.
For the second point, let N C M be one of the 2?31 subfactors, and let v be the Dg-action, which we
will see in Section 13. Let Z(Dg) = Z5 be the center of Dg. Then it is easy to show that the inclusion
N %, Z(Dg) C M x., Z(Dy) is still 25°1, and it is the fixed point algebra pair of N x, Dg C M x., Dg
under the dual action ¥ restricted to the group part Hom(Dg, T) & Zy X Zs of the unitary dual Ds.

This reasoning indicates that there must be two missing solutions of the polynomial equations for
G = Zsy X Zy X Z3 with m = 12 in Evans-Gannon’s list [16, Table 2], for which the restriction of (-, -) to
Zs X Zs should be (-, -)2 in Example 9.6. Since they are complex conjugate to each other, we give one of
them now.

Example 12.18. Let G = H x K with H = 7y X Zy and K = Z3, and let
((h k), (B K)) = (o B2,
a(h, k) = ay(h)CY,
with ag(0) = ap(91) = an(g2) = 1, an(gs) = —1, where we use the parametrization H = {0, go, g1, g2}

as in Example 9.6. Then there is a unique solution for the equations in Theorem 9.1, which is given by
c=e ™6 =06+ 43 and

7 1 . 0 0
1—+v3 1| 1L 1 1 )
b= el -2 | + el G
Pole) e/ 2vasl g ~Gi
1
1l -1 1
+ —1 & C3 3

/3 €

where we identify ¢*(H x K) with (?(H) ® (*(K), and ¢*(H) and ¢*(K') with C* and C? via orthonormal
bases < dg, dg,, 04,504, > and < dy, 01, 02 > respectively. We can apply Theorem 12.17 to this solution
with w given by following table, and obtain the C* near-group category for Zs with m = 6 discussed in
Subsection 10.6.

Note that the above solution is invariant under § € Aut(G) given by 6(0,z) = (0, ), 0(go,z) =
(91, _'I)’ (glax) = (907 _'I)’ (927$) = (927w)'
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090|919
oO(141}]1]1
go | 1 i -
g |1]-1] 1] 1
gs 111 -1 1

13. ORBIFOLD CONSTRUCTION II (EQUIVARIANTIZATION)

13.1. Automorphism groups. In this subsection, we investigate the structure of the outer automorphism
group of a C* near-group category C in the irrational case. To realize group actions on C as those on a
concrete operator algebra, we use the Cuntz algebra model discussed in Section 4.

We fix a solution (¢, (-, -), A, C, J, B,) of the equations in Theorem 8.7, and define a G-action « on
O+ and an endomorphism p as before. We introduce a subgroup Aut,(O+y) of Aut(O,4.,) by

Aut,(Opim) = {7 € Aut(Opim); Yop=pon}.
Lemma 13.1. For any v € Aut,(O,4.,), there existw € T, § € Aut(G), and v € U(Ky) satisfying
(0(9),0(h)) = (g, h), A(0(9)) = uA(g)u*, uC = Cu, uJ = Ju, and By (§) = (u @ u)By(u*&)u*, such
that
Y(Sy) = w*Sag),  YTy(€)) = wlig) (uf).
On the other hand, for any triple (w,0,u) € T x Aut(G) x U(Ky) satisfying the above condition, there
exists Y(w,0,u) € Aut,(Onym) satisfying

Vo) (Sg) = W Sog)s  Vwou)(T(€)) = wligy (uf).

Moreover two different (w, 0, u) and (W', 0, u’) give the same automorphism if and only if w' = —w, §' =4,
andu' = —u.

Proof. 1t is straightforward to show the second part, and we show only the first part here. Let v €
Aut,(Oy1m)- Since (id, p*) = CSy and v commutes with p, we have v(Sy) € (id, p?), and v(Sp) is a
multiple of Sy. Replacing  with it j4 1y © v for appropriate ¢, we may assume 7(Sp) = Sp.

We claim that there exists § € Aut(G) satisfying v o ay 0 v~ = gy and y(S,) = Sp(y). Since
v(p* p?) = (p*,p*), and

(0*.p%) = @ CS,S; ® KK,
geG

there exists a permutation ¢ of G fixing 0 such that v(5,57) = Sp(g) S5 ,)- Thus Sp,,7(S,) is a unitary
belonging to (0 ag 0 v, avg(y))- Since

Yoagoy top=p=agop,
we have (y o ay 077! agg)) C (p,p) = C, which implies that y o ay 0 y~! = gy and 6 is a group
automorphism of G. Moreover,

V(Sg) = Y(g(S0)) = ae)(7(50)) = a(g)(So) = So(g)-
Since
Adv(U(g))op=70AdU(g)opoy "t =yopoagon " = poayy),
7(U(9))So = 7(U(9)S0) = 7(S) = So,
We have v(U(g)) = U(0(g)), which together with o, (U(h)) = (g, h)U(h) implies ((g),0(h)) = (g, h).

Since v commutes with p, it induces a unitary transformation of (p, p?) = K. Since

ag(7(To(€))) = 1(@9-1(9)(To(€))) = 1 (To(€)),
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we have (75(§)) € Ko, and there exists a unitary u € U(K,) satisfying v(76(§)) = To(uf). For T,(§),
we have

V(T(€)) = 1(U(=9)To(§)) = U(=0(g))To(us) = To(g)(us).
Since v(Sy) = Sp, we get y o j; = j; oy and v o j; 0 7, and in consequence Lemma 7.4 implies that
A(0(g9)) = uvA(g)u*, uC = Cu, and uJ = Ju.
It remains to show that the condition (I(7)) = I(y(T")) is equivalent to By, (§) = (u®@u)By(u*&)u*
under the other conditions we have verified so far. Thanks to Lemma 7.18, the former is equivalent to
Y(By4(§)) = Bag)(uf). Since By(€) € GG, we get v(By(§)) = (u ® u) By(§)u*, and we are done. [

Recall that the periodic 1-parameter automorphism group {7 iq.r) }+er, which is a central subgroup
of Aut,(O,4.m), has a unique KMS state, whose GNS construction produces a type III factor M extending
Op+m (see Appendix and [28]). We use the same symbols o, p, (,,6,4) for their extensions to M as before.
We denote by C C End(M) the fusion category generated by p. To avoid possible confusion, we make
the only exception in this note here, and use the tensor symbol ® for the monoidal product of C instead of
composition, and do not omit the symbol Hom for the spaces of intertwiners in the following arguments.
To emphasize that X € M is regarded as an element in

Home (p,v) = {X € M; Xu(z) =v(x)X, Vo € M},

we use the notation (v|X|u) following [9, Section IV]. (Caution: the order of i and v are switched in
(v|X|p) and Home(p, v).) Note that we have

I, ® (v|X|p) = (c @v|o(X)|o ® u) € Home(o ®@ p, 0 @ v),

v X|p) @1, =r®oX|p®o) € Home(p® o, v ® o).

An automorphism of C is a tensor auto-equivalence of C as a C*-category, which is a pair (F, L)
consisting of an auto-equivalence F' and natural isomorphisms L, ,, : F'(01) ® (02) = F(01 ® 02)
satisfying

L01®02703 ° <L01702 ® IF(U?,)) = L01702®03 o (101 ® LU2703)'
The automorphism group Aut(C) of C is the collection of automorphisms of C modulo tensor natural
isomorphisms. Since we are working on C* categories, an isomorphism between two objects are always
assumed to be unitary. An automorphism is inner if it is equivalent to the one given by 8 ® - @ 37! for
an invertible object 3 in C, which is always equivalent to oy ® - ® 04;1 for some g € GG in our case. The
outer automorphism group Out(C) of C is Aut(C) modulo the normal subgroup of inner automorphisms.

Every v € Aut,(O,,+n) extends to M and induces an automorphism of C, which is denoted by F., (we
omit the natural isomorphisms L : F,(01) ® F,(02) = F,(01 ® 03) as it is trivial now). More precisely,
we define F, (o) = yo0 0 o~~! for an object o € C, and define F, on the Hom-spaces by the restriction of
7. For v = (u,0,4), We have F, (o) = au(q), F5(p) = p,

Lemma 13.2. An automorphism v € Aut,(O,+.,) induces a trivial automorphism of C if and only if
Y = Vw,id Iy forw e T.

Proof. Since F, is a trivial automorphism only if it fixes the equivalence class of each simple object, we
assume Yy = 7(u,id,u)- Assume that 7 is a natural tensor isomorphism between F’, and id. We identify
Na, € Home(ay,ay) and 1, € Home(p, p) with complex numbers of modulus 1. Note that we have
Home (g, @y © ) = Clag, Home(p, ag @ p) = Clg, Home(p, p ® ) — CU(g), Home(ag, p &
p) = CS,, and Home(p, p ® p) = K. Since 7 acts on the first three trivially, we get 1., = I,,. For
Sy € Home (o, p ® p) and T (§) € Home(p, p @ p), we have

(np ® np) o Fw((P ® p|Sg|a9)) =(p® /0|Sg|ag) O Nags
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(1o ®@mp) o Fy((p @ pTy(E)lp)) = (p @ p|T4(E)|p) o mp,

which are equivalent to nzwz = 1 and nywu = Ii,. Since Y idu) = V(-w,id,—u)> W& may assume u = [,

and v = Ving " id Iy )

Tracing back the above argument, we can see that v, iq, Ix,) induces a trivial automorphism of C. [J
We set

AutmO(On—i-m) = {’7 € AUtp(On—l-m); 7(50) = SO} = {V(I,G,u) S AUtp(On+m)}-
Then we have
Aut,(Oyqm)/T = Aut,, 0 (Onim)/ 2o,
where T is identified with {7(cit iq 1) }ter/2rz and Z, is identified with {7y(1a+ [,CO)}. The above lemma
shows that there is an injective homomorphism from Aut, o(O,+1,)/Zs into Aut(C).

Recall that the gauge group G(A, C, J) is the set of all unitaries in U(Ky) commuting with A(g), C,
and J.

Theorem 13.3. With the above notation, we have
Aut(C) = Aut,(Opim)/T = Aut,0(Onim) /2o
= {(0,u) € Aut(G) x U(Ky); (0(g9),0(h)) = (g,h), uC = Cu, uJ = Ju,
A(0(g)) = uA(g)u”, Byg)(§) = (u @ u)By(u §)u"}/{(id, £1ic, ) }-
In particular, the kernel of the canonical homomorphism from Aut(C) to Aut(G) is isomorphic to
[0 € G(A,C,0); Byl€) = (u® u) By(wu}/ {1, )

Proof. It suffices to show that the association Aut, ¢(O,4.m) 2 7 — F, induces a map onto Aut(C). Let
(F, L) be an automorphism of C. Up to a tensor natural isomorphism, we may assume F'(ay) = g4 and
F(p) = p with a group automorphism 6 € Aut(G). Then we have

Flag) ® Flan) = asg) @ aom) = aoggrn) = Flagn) = Flag ® ap),
Flay) ® F(p) = apg) @ p=p=F(p) = F(ay @ p).
We claim that we may further assume
Flp®ag) = F(p) © Flay),

F(p®p)=F(p) ® F(p),
and Lo, o> Lay.p» Lpa,» and L, , are trivial. Indeed, there exist 2(g,h) € T and y(g) € T satisfying
Lo, an = (gig+n)|2(g, h)|oig+n)) and Lo, , = (p|y(g)|p), and the relation
Lag®ah,p © (Lag704h ® IF(p)) = Lag,ah®p © (IF(ag) ® Lamp)
implies x(g, h)y(g+h) = y(g)y(h). Now passing from (F, L) to (F”, L") by a tensor natural isomorphism

n: F = Fwith na, = (aog)|y(9)les) 1o = (pl1ulp) Nosa, = ¥(9) L0, and ne, = L, we get

the claim.
Note that we have

F((ag ® anlimlagen)) = FlaginlImlagin)
= (g(g+n)  Imlaogrn)) = (Qogg) @ o) Imlasgrny),

F((ag ® plLmlp)) = FlplImlp) = (pllmlp) = (@) ® plLrlp).
We will freely use these relations and their adjoints in what follows.
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Since F'((p®p|So|id)) is an isometry belonging to Home (id, p® p), it is of the form w(p® p| S |id) with
w € T. Thus replacing F' with F, _, o F', we may further assume F'((p ® p|Splid)) = (p ® p|Splid).

id, i)
Since S, = ay,(Sy), we have

(p @ plSylay) = ((p|l]ey @ p) ® I,) © (Ia, @ (p @ p|Solid)).

Applying F to this, we get F'((p ® p|Sy|ay)) = (p ® p|Ss(g) |e(g)) and its adjoint.
Since F restricted to Home(p, p ® p) is a unitary transformation of Home(p, p ® p), we introduce an
automorphism v € Aut(O,,1.,) by

F(((p @ plSylay))) = (p @ plv(Sy)|ag)),

F((p@plTlp)) = (p @ plv(T)lp)-
The above computation shows v(.S,) = Sp(g)-

Recall that we have Home(p, p ® a,) = CU(g). Thus F((p ® ay|U(g)|p)) is a multiple of (p &
o) |U(0(9))|p). Since U(g)So = So, we have
(0 @ plSofid)
= (L, ® (p[Lmlag @ p)) o ((p ® g|U(g)|p) ® 1) © (p @ p[Solid).
Applying F' to this, we get F\((p ® oy4|U(g)|p)) = (p ® agg)|U(8(g))|p) and its adjoint. We claim
F((p® ag|U(g)]p)) = (p @ ag(g)|7(U(g))|p), or equivalently v(U(g)) = U(6(g)). Indeed, applying F' to

the two equalities

(p® plU(g)Sh|om)
= (I, @ (plLmleg @ p)) o ((p @ ag|U(g)|p) @ 1,) o (p @ p|Shlan),

(0@ plU(g)T|p)

= (L, @ (pllmlag @ p)) o ((p @ ag|U(g)|p) @ I,) o (p & p|T|p),
we get Y(U(g)Sn) = U(0(g))v(Sk) and v(U(g)T) = U(0(g))y(T). Choosing an orthonormal basis
{T;}™, of Home(p, p ® p), we get

m

V(U (9)) =Y 1(U(9)Sn)(Sh)* + D> _ (U (9)T)NT)"
heG =1

= U9 (SkSh) + > UB(g)V(TT}) = U(6(9)),

heq@ i=1
which shows the claim.
We have already seen that F' coincides with v on the following morphism spaces:
Home(agsn, 0y @ az),  Home(p, ay ® p),  Home(p, p® ),

Home(ag, p® p),  Home(p, p @ p),
and their adjoints. To finish the proof, it suffices to show v € Aut, o(O,,1n,). Before showing it, we claim
7 © g = y(g) © 7. This is easily shown for Sy,. Applying F' to
(0@ plag(T)lp) = ((pllmlay @ p) @ 1p) o (1o, @ (p @ pIT]|p)) o (ag @ plLslp),
we get (g (T)) = ap(g) ((T))-
Applying F' to the two equations

(p® plii(T)|p) = Vd((p® p|T|p)* ® 1,) o (1, ® (p @ p|Solid)),
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(p @ plia(T)|p) = V(I, @ (p@ plT|p)") o ((p ® p|Solid) @ 1),
we see that v commutes with j; and j,. Thus Eq.(3.3) implies
Y(p(So)) = p(Se) = p(7(S0)),

and

Y(p(Sg)) = (U(g)p(So)U(9)") = U(0(9))p(S0)U(0(9))" = p(Se(g)) = p(7(Sy))-

It remains to show v(p(7)) = p(y(T)) for T € Home(p, p ® p). We recall the two projections

P =3 ,caSS; and Q = 3", T;T, which satisfies 7(P) = P, 7(Q) = Q, and P + Q = I . Then
Eq.(3.12) implies v(p(T))P = p(~(T))P and Pv(p(T)) = Pp(v(T)). Note that Qp(T)Q = I(T) € K*K*.
Let 7", 7", T" € Home(p, p @ p). Then T"*T"* p(T)T"" is a scalar. Denoting it by £, we get

&L, = (PIT"[p @ p)" o ((p|T"[p @ p)" @ 1p) o (1, @ (p|T1p ® p)) o (pT"|p © p)-
Applying F to it, we get Y(T")* v (T") " p(v(T))y(T") = &, and so

T T (DT = € =TT (1)

This shows Qv (p(7(T)))Q = Qp(T)Q and equivalently Qp(v(T)))Q = Qv(p(T))Q, which finishes
the proof. U

Theorem 13.4. When A(g) is a scalar a(g)1 for any g € G, the inner automorphism group of C is trivial.
In consequence,

ut(C) = Aut(C) = Autp(Opim)/T = Autyo(Onim)/Zo
= {(9, u) € Aut(G) x G(A,C, J);
a(0(g)) = alg), Ba)(§) = (u®@u)By(u*§)u"}/{(id, £1)}.
Proof. Let F = oy, ® - ® ;. Then F(a,) = a,, and F(p) = AdU(h)~! o p. We show that 1) determined

by
Ny = (9, M) Ia, € Home (i, @ g ® a7, ),

= (pla(h)U(h)|AdU(h)™' o p) € Home(ay, @ p @ o', p),
is a tensor natural isomorphism from F' to id. Indeed, it suffices to verify
(77ag1 ® 770492) o F'((ag, @ agy|Iam|ag, 1g,)) = (g, @ aigy|Tag|org, 1g,) © Neg, 1955
(Mo, @1,) 0 F((0g @ plLpmlp)) = (g @ plLnalp) o1,
(1 @ 1a,) 0 F((p @ ag|U(9)|p)) = (p @ ag|U(g)[p) © 1y,
(1, @ 1p) 0 F((p @ plSylay)) = (p @ plSglag) © 7a,

(1, @n,) o F((p @ plT|p)) = (p @ p|T|p) © 1,
which are equivalent to

(91, P) (g2, 1) = (g1 + ga, h),
ag(a(h)U(h)){(g, k) = a(h)U(h),
(h, g)ya(h)U(h)an(U(g)) = U(g)a(h)U(h),

(h)U(
pla(M)U(h))a(h)U(h)an(S,) = (g, h) S,
pla(h)U(h))a(h)U(h)an(T) = Ta(h)U(h).

It is straightforward to show these equalities. O
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Corollary 13.5. Whenm = n,
Out(C) = Aut(C)
= {0 € Aut(G); (0(g),0(h)) = (g, 1), a(6(g)) = alg), b(0(g)) = b(g)}.
Let
Fe ={(0,u) € Aut(G) x G(A, C, J); Byg)(§) = (u® u)By(u&u"},
which is isomorphic to Aut, o(Oy+1m). For z € I'c, we denote 7, instead of Y(1,2) for simplicity.

Remark 13.6. Assume that A(g) is a scalar for any g € G. Then there exists a Out(C)-graded extension C’
of C such that Out(C) on C C C' is implemented by inner automorphisms of C'. Indeed, let p = 4, — 1),
and consider the crossed product M x,, Zy, which is the von Neumann algebra generated by M and a
period two unitary A satisfying Az = p(x)\ for any x € M. We can extend p, a, and v to M X, Z, by
P(A) = A ay(A) = A and 5(\) = A\. We have 74,5y = Ad A. Let /i be the dual action of j, which is a
period two automorphism of M x,, Z, given by

i(x) = z, reM
ME= =\, z=x
Then it is straightforward to show
p(x) = Z Sglrg(x) Sy + Z Ty(er)ivo plx)Ty(er)"

geG g,r

Now we can see that the category generated by i o g is equivalent to C, and we can set C’ to be the
category generated by /i o p and Ar,..

Example 13.7. Any solutions of Eq.(9.1)-(9.5) given in Section 9 have trivial symmetry, and the corre-
sponding C* near-group has trivial automorphism group.

Example 13.8. For G = Zs and (g, h) = (", there is a unique a(g), which is given by a(g) = 592.

There is a unique solution of Eq.(9.1)-(9.5) as follows (see [32, Example A 4] and [16, Table 2]): ¢ = —1,
d = (34 35)/2,b(0) = —1/d,

G G5
b(l) =b(4) = ==, b(2) =b(3) =—==.
(1) = b(4) ;s (2) = b(3) 7
In particular, the solution has a symmetry a(g) = a(—g) and b(g)) = b(—g), and therefore we have
Out(C) = Z, for the corresponding near-group category C for G = Zs and m = 5.

Example 13.9. The solution for G = Zy X Zy X Z3 with m = 12 given in Example 12.18 has a Z,-
symmetry, and Out(C) = Z, for the corresponding near-group category C.

Example 13.10. As we have seen in Section 10, there are exactly two C* near-group categories for
G = Z3 with m = 6. For each of the two categories, the solutions of Eq.(8.15)-(8.25) are parametrized by
{(z,y) € R?; 2% +1? = \/3/24}. The group automorphism Zs > g — —g € Zs takes (z, %) to (—z, —y).
The gauge group G(A, C, J)is O(2), and

1 0
(o h)
acts on the solutions as (x,y) — (z, —y), and the rotation
cosf —sind
R(6) = ( sinf  cosf )
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acts on the solutions as (z,y) — (cos4fz + sin 40y, — sin 40z + cos 46y). We fix a solution B, corre-
sponding to (1/v/3/24,0). Identifying Aut, o(Oy) with

{(0,u) € Aut(Zs) x O(2); Byg)(§) = (u @ u)By(u§)u"},

we see that it is generated by the two elements
™ .
(_17R<Z))7 <1d7L)

Thus Aut,(Oy) is isomorphic to the dihedral group D;s of order 16, and the automorphism group
Aut(C), as well as the outer automorphism group Out(C), of the corresponding near-group category C
are isomorphic to Ds.

13.2. The case of m > |G|. In this section, we assume that I" is a finite subgroup of the group
{ueG(A,CJ); By(§) = (u®@u)By(u"§)u’}.
We regard +y as an outer action of I' on M via 7, = 7(1,id,u). Recall that
N = pM)V{U(g)}gec € M

is a 2°1 subfactor with | = m/n. The purpose of this subsection is to determine the structure of the
subfactor N' x, I' € M x, I'. Let {\,},er be the implementing unitary representation in M X, I'.
Then we can extend a and p to M X, I by éy(\,) = A, and p(\,) = A,. We would like to describe the
structure of the fusion category generated by p.

Lemma 13.11. Let the notation be as above.

(1) The two commuting actions o and 7y give an outer action of G x I' on M.
(2) p is irreducible.
(3) & is an outer action of G.

Proof. (1) The statement follows from Theorem 14.1 below.
(2) Assume X € (p,p). Then X is uniquely expanded as X = )
xr € M, we have

XyA, with X, € M. For any

uell

> p@) X =D Xdup(z) = Xuyu 0 p(a) A,

uel uel’ uel’

and so p(7)X, = X,7, o p(x). The Frobenius reciprocity and (1) show that (7,0, p) = (74, p?) is trivial
except for u = I, and X € (p, p) = C, which means that p is irreducible.

(3) Assume that Y € M X, I" satisfies Yo = @,(z)Y forany € M x, I'. Then Y is expanded as
Y =3, cr Yul, with Y, € M, and we can show that Y, € (v, ay) = Cd,, 194 as before. This implies
that Y = 0 unless g = 0, and so & is an outer action. O

Since we are working on a non-commutative group I, we recall the dual action of v as a Roberts
action of the dual I" of T'. Recall that a Hilbert space # in M is a closed subspace of M in the weak
operator topology such that W*V is a scalar for any V, W € H. The space H is equipped with the inner
product (V, W) for V, W € H given by W*V'. Let {V,}, be an orthonormal basis of a Hilbert space H in
M. The support of H is defined by

> Vv
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which does not depend on the choice of the orthonormal basis. When the support is I, we say that H has
tull support. For a full support Hilbert space H in M, we can define a unital endomorphism py of M by

pu(z) =) ViaVy,

whose definition does not depend on the choice of the orthonormal basis either. When H is globally
invariant under the I'-action -, the endomorphism p; preserves the fixed point algebra M" = {z €
M; v.(z) =z, Yu € T'}, and we denote by ¥4 the restriction of p3 to M". The equivalence class of ¥y
depends only on the unitary equivalence class of H as a representation space of I'. Since -y is outer, if the
representation H is irreducible, so is ;. For any finite dimensional (not necessary irreducible) unitary
representation 7 of I, there exists a full support Hilbert space H, in M so that the I'-action on H is
equivalent to 7. We use the notation ¥, instead of 43, for simplicity. Let v : M < M be the inclusion
map. Then we have [17,] = dim 7[v| by definition, and so

7] = @ dim 7[34,
mel’
by the Frobenius reciprocity. We call {¥r} .. the pre-dual action of .
Let {V(7);}{i™™ be an orthonormal basis of . Applying the above argument to the second dual

action vy, ® Ad o, on M @ B(¢*(T")), where {0, }uecr is the right regular representation of I', we can
define the dual action 4, € End(M x., I'), which is explicitly given by the following formula:

) = d TV (maV ()i, re M
VW(:U) B { /\ua T=N\
This can been seen by identifying A\, € M x., I'with I ® \, € M ® B(¢*(T")), where {\,} in the latter
is the left regular representation of I, and M with 7, (M) C M ® B(¢*(T")), where
Ty (@)€ (1) = Yo (2)§(w),

and by using the Hilbert space {V ® I; V € H,} in M ® B((?). In fact V(7); ® I commutes with I @ \,,
and we have

Z (V(m)i @ D () (V(m); @ 1) = M(Z V)V (m);).

Remark 13.12. When 7 € Hom(I", T) is a 1-dimensional representation, the Hilbert space H., is spanned
by a single unitary V, with v,(V;) = 7(u)V,,. Thus we have

. 2 reM
AdV7 o 4. () = { Ty, =X’
which recovers the usual dual action in the commutative case.

Lemma 13.13. Let the notation be as above.

(1) [3p) = 7]

(2) [Jrtg] = [Ofg%r]-

(3) Formy,m € I' and g1, g2 € G, we have dim (Y, g, s Yy Ogy) = Oy 130419
Proof. (1) Choosing a basis {V (); } %™ of H,,, we set

dim 7

2 ViV (m))),
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which is a unitary belonging to (px, ¥xp). (2) can be shown in a similar way.
(3) By the Frobenius reciprocity, we have
dim (Y, Qg , Y Og,) = dim(Ymz@my s Qgo—g, )-
Thus it suffices to show dim(9;, &,) = 0,10, for 7 € Hom(I', T) and g € G. Thanks to Remark 13.12, we
can further replace 4, with Ad V o4,. Assume that X € M x, I satisfies X Ad V* 09, (z) = a,(x)X for

any r € M x,I'. Then X is expandedas X =} . X, A, with X, € M, and X, € (7, ay) = Cdy, 104,.
Therefore X is a scalar multiple of J, .. Setting z = \,,, we get 7 = 1if X # 0. U

We denote by 7 the defining representation of I' on Ky, which is not necessarily irreducible.

Theorem 13.14. Let the notation be as above.
(1) p? is decomposed as
6°) = Play] ® nlim ).
geG
(2) Let i : N x, I' — M %, T be the inclusion map. Then

(W] = [id] @ [, ]
(3) For any my,my € T, we have dim (5, §, YryP) = Ory.ma-
Proof. (1) Since v, acts on {S, },e¢ trivially, we can easily see S, € (&, p?). As in Section 8, we choose

an orthonormal basis {7} (e;)}!_; of Ko, and set
I

eng = Y Ty(en)Thle;)".

i=1

Then {ey 1 }gnec is a system of matrix units in M?. We choose an isometry R € M" whose range
projection is e, and set V (mg); = R*Ty(e;). Let H,, be the linear span of {V (m);}\_,. Then H,, is a
Hilbert space in M with full support such that the restriction of -y to H, is equivalent to 7y. Therefore
we may assume that 7., which is defined up to equivalence in any case, is given by

3 _ STV ()i V (mo);,  weM
Vﬂo(x) B { Aua xr = A

We set R, = e, oR, which is an isometry in M". We claim R, € (Y0, p°). Indeed, for z € M, we have

ﬁZ(x)Rg = p*(z)eg0Ro = ZT ei)p(x)To(e;)" Ry

= Zeg ORR To(e,) ( )T0<61) RO - Rg;)/ﬂo o ﬁ(l’),

=1

and
ﬁQ()‘u)Rg = AuRg = Rg>\u = Ry, © ﬁ(AU)7
which shows the claim. Since
ZRQR; = Z €9,0€0,0€0,9 = Zey,g = ZTg(ei)Tg(ei)*a
geG geG geG g,

we get the statement.

2014 Maui and 2015 Qinhuangdao conferences

in honour of Vaughan F. R. Jones’ 60th birthday Page 336



Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

(2) Let ¢ : N' < M be the inclusion map. Then the proof of Theorem 11.2 shows (¢, pt) = (j1 0 j2)*/Co.
This and the above argument shows the statement.
(3) The statement follows from (1) because

dim(&mﬁv &mﬁ) = dim(&ﬁ@m ’ ﬁ2)
= dim(Ymen,, &) + ndim(Gmemen . 5) = Y Am(3r,, Yr ) = O, m,.

geG geG

O

Example 13.15. We apply the above theorem to Example 13.10. As I', we take the group generated by

(o %) (V)

which is the dihedral group Ds. The defining representation 7 is real and irreducible, and the tensor
product my ® 7 is decomposed into 1-dimensional representations,

To Q@ Ty = EB T.

T€Hom(Dg,T)

Since 7 ® 7y = 7 for any 7 € Hom(Ds, T), we get

[(ﬁ/ﬂoﬁ)z] = Wﬂo@ﬂoﬁQ] = Z Hﬂ'dg] +3 Z [Aremo Pl
g€Zs3, T€eHom(Dg,T) T7€Hom(Dsg,T)
= > [rag] + 12[x .

g€Z3, TeHom(Dg,T)

This means that the fusion category generated by ¥, g is a near-group category with the group Zy x Zy X Zs
and the multiplicity parameter m = 12.

13.3. The case of m = |G|. In this subsection, we assume that C is a C* near-group category with a
finite abelian group G and m = n, and we use the same notation as in Section 9. In this case, the group
Aut(C) = Out(C) is isomorphic to the set of group automorphisms of G leaving the triple ({-,-),a,b)
invariant. For simplicity, we assume that we have such an automorphism 6 of order two, which covers all
the known examples (see Example 13.8, Example 13.9). Then v = 7y, is an outer automorphism of the
factor M of order two commuting with p, and it satisfies the relation v o ay = cg(y) © 7. Thus Theorem
14.1 implies that « and y give an outer action of G X Zs on M.

We denote by A the implementing unitary in the crossed product M X, Z,. As before p extends to
p € End(M x., Zy) by p(A) = A. Let G? be the set of automorphisms of G fixed by 7. Then «, with
g € G? also extends to &, € Aut(M X, Zs) by cy(\) = . We denote by 4 the dual action of v, which is
identified with the generator of the dual action too. As in the previous subsection, we can show that p is
irreducible with [§5] = [349] # 7], and that & and 4 give an outer action of G¥ x Z.

Lemma 13.16. (p°, p%) = (p?, p?)".
Proof. Assume X + Y\ € (p?, p?) with X, Y € M. Then X € (p?, p?)” and
Y € (p*,p°) = (v,p") = {0}
0
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Recall that we have
(7, 1") = D CS,5; 9 BIK).

geG

We choose a subset A C G\ GY satisfying AN O(A) = ) and AUBO(A) = G\ GY. Then the above lemma
shows

(6%, 7%) = @D CS,S; & @D CT(S4S; + Sore)Si)) @ B(K)™.
geG? gel
Thus for g € A, the projection 5,57 + Sg(g) g, is minimal in ( p%, p?), and it corresponds to an irreducible
component of /*. We choose an isometry R, € M whose range projection is 5,5 + So(g)p(y)> and
defined 7, € End(M X, Zy) by my(x) = R} p*(x)R,y. Then

_ [ R5(5404(2) 55 + Sorg)09) (4) S5 ) Rg, 2 € M
To(*) =1 z=A

For g € GY, we have T, € (p, p?). For g € G \ G’, we have

1 .
E(Tg + Toi) € (5, 0°),

1 NI
E(Tg —To) € (30, 7).

Thus it is straightforward to show the following.

Theorem 13.17. Let the notation be as above.

(1) p? is decomposed as

G + G? G| —|GY .. .
7] = lag) + > [m,) 4 G |2| a1
geG? geA
(2) Letk : N Xy Ly — M X Zo be the inclusion map. Then
[kR] = [id] + [p].

About the fusion rules, we have the following.

Theorem 13.18. Let the notation be as above.

(1) The tensor category generated by {7} U {ay},eqe U {my}gen is equivalent to the representation
category of G Xg Zs.
(2) Forg € G, we have

(3) Forg € A, we have
[mol[A] = [pllmg) = [p] + [77).
Proof. (1) Let MY be the fixed pomt algebra
={r e M; a4(z) =z, Vg € G},

and let 1; : M% — M and 15 : M < M X, Zy be the inclusion maps. Then it is easy to show that
ME C M %, Zy is a crossed product 1nclu51on by a G X Zg action, and the tensor category generated
by t2t1(t2t1) is equivalent to the representation category of G xg Zo.
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By construction, we have [d,][t2] = [t2][a,] for g € GY, and
[mgllea] = [eallarg] + [ta][cvn(e)];
for g € A. Thus we get the following for g € A by the Frobenius reciprocity:
[mg] = [t20ygt2] = [t2tg(g)22]-

Now we get

121 (t201)] = Y [20gTz] = > [agl[tal2] + Y 2[m,]

geG geG? geEA
= Y lag+ > laA+ Y 2,
geG? geG? geA

which shows the statement.
(2) We have &, o p = p, and taking its adjoint, we get the statement.
(3) By construction, we have
1
V2
53 (5, = ) € (3 30)

which shows [7,p] = [p] + [}p]. Taking its adjoint, we get the statement. O

Ry (Sy + Seig)) € (P, myp),

Remark 13.19. The endomorphism tsa,75 corresponds to the induced representation

IndgMZQg,

where g € G = G is regarded as a one-dimensional representation of G.

From the above two theorems, it is easy to determine the principal graphs of the subfactor N x., Zy C
M X, Zs, in particular, for Example 13.8 and Example 13.9. We leave it for the reader.

14. APPENDIX

Let O,1., be the Cuntz algebra with canonical generators {S;};cs, where J = {1,2,...,n + m}.
Let /1 = {1,2,...,m}and Jo = {m+ 1,m + 2,...,n + m}. We consider a weighted gauge action
v : T — Aut(O,,41,) defined by

eitSi, 1€ J
’Yt(Si) = { 621755@,7 ie J;

Then 7 has a unique KMS-state ( with the inverse temperature log d, where d = 42—t ”’;2“‘" (see [14]).
The weak closure M of O,,,,, in the GNS representation of ¢ is the Powers factor of type III; ;4. With
identification {S;} = {S; }ic, and K = span{S; };cs,, the Cuntz algebra model (c, p) of a C* near-group
category C can extend to M, which gives a realization of C in End(M) (see [28]). The purpose of this
appendix is to show that the symmetry group Aut,(O,,4.,) is also realized in Aut(M) C End(M), and
is even faithfully realized in Out(M).

Let 5 € Aut(O,,4.,) be an automorphism globally preserving span{S; };c;, and span{S;}cr,. Since
B commutes with ~;, it preserves  and extends to M, which is still denoted by /.

Theorem 14.1. Let § € Aut(M) be as above. Then (3 is inner if and only if § = id.
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Proof. We use the same symbol ¢ and ~ for their normal extension to M. Then we have o} = V—tlog d>
and the centralized M., is the hyperfinite II; factor with a unique trace 7 = p|M,,. We set

N 1, 1€ J;
wi ={y e
For a k-tuple £ = (£1,&s,...,&) € J*, we set S¢ = S¢, S, -+ - Se,., 7(€) = &, and

k

w(§) =) w(&).

i=1
Then we have 7;(S¢) = €“(©)tS;. We introduce finite dimensional x-subalgebras of M., by
Aga = span{SeSy; w(§) = w(n) = k},

Ao = span{SgS;’;; w(&) =wn) =k+1, r&),r(n) € L},
A = A1 © Agp.

Then { A, }7°, is an increasing sequence of finite dimensional *-subalgebras of M., whose union is dense
in M, in the strong *-topology (see [28]). We denote by Ej, the 7-preserving conditional expectation
from M, onto Aj.

Assume that £ is inner, that is, there exists a unitary u € M satisfying ux = 5(z)u for any z € M.
Since 8 commutes with ~,, its Fourier coefficient

1 2

—ikt
= — dt
o J, € N (U)

U

satisfies uyx = [(x)uy too. This implies that u, is a multiple of a unitary. On the other hand, the KMS
condition implies

* 1 *
@(Ukuk) = ﬁgp<ukuk)a

which implies that u;, = 0 for any k£ # 0. Thus u belongs to M.,.

Letvy, = Fi(u). Then we have vz = B(x)vy forany = € Ay, and the sequence {vy } 72, of contractions
converges to u in the L?-topology with respect to 7. We may assume 3(S;) = w;S; for any i € J by
choosing appropriate orthonormal bases of span{S; }ic, and span{S; }ics,. For & = (&1, &, ..., &) € JF,
we set

We = W e, =+ We, -
Then there exists two numbers ¢, 1, ¢ 2 € C satisfying
Vi = Ck,1 Z CL)gSéSg + Ck,2 Z CU&(JJZ‘SZSZ‘S:S;.
w(&)=k w(&)=k—1, i€J

On the other hand, we have the martingale condition Ej(v41) = vg. Simple computation shows

15 8,1%, wlé)=k icl
75eSE, w(§) =k, i€l
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Thus
vp = Ej(vg41)
= Ck+1,1 Z W§Ek(S§Sg) -+ Ck+1,2 Z (Uglek(SgSiSZ*Sg),
w(&)=k+1 w(§)=k, i€J2
= Ck+1,1 Z (.UngEk(SgSZS:Sg) + Clk+1,1 Z w§szk(S§SZS:Sg)
w(&)=k, i€Jy w(&)=k—1, i€J>
Ck+1,2 *
+ P2 Z wgwngSg
w(&)=k, i€J2
Chk+1, * * Q¥
= % Z wgwngSg + Ck+1,1 Z U.)gwngSiSi Sf
w(&)=k, i€Jq w(&)=k—1, i€J2
Ck+1,2 *
+ d2 Z (,UgwngSE,
w(&)=k, i€J
and so
a1\ _ (T # Ch+1,1
Ck.2 1 0 Ck+1,2
where
1
Z=— Wi,
1€Jy
1
w = — Wy
n“
i€J2

Let I" be the above matrix. Then the two eigenvalues of " are

mz £ vV/m?222 + dnw
2d )

Ay =

Unless |2| = 1 and w = 2%, we have [\;| < 1, and

(C’“’l > :Fl(c’““’l ) — ( 0) (I — 00),
Ck,2 Ck+1,2 0

for we have |cx1;1| < 1and |ck42| < 1, which is contradiction.
Assume |z| = 1 and w = z? now. Then we have w; = z for any i € J; and w; = 2* for any i € Jy,
and the restriction of 3 to M, is trivial. This implies that u € M, N M, = C, and 8 = id. O
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