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A Note on Martingales with respect
to Complex Measures '

M. G: Cowling* G. I. Gaudry* and  T. Qian**

Introduction

Let v be a rectifiable Jordan curve passing through oo, and let z(z) denote its arclength
parameterization. Assume that « is a chord-arc curve: this means that there is a constant

such that
lo=bl  __le=¥ oo va b

= | [P 2(2)dz|  l2(a) = 2(B)]

Let Dy denote the ring of sets generated by the collection of dyadic intervals of length
27k k € Z, where Z is the set of all integers, and define the “conditional expectation”

operator Fy by
ELf(t) = Lf(x)z'(m)dz//lz'(m)dx, tel,

where I is a dyadic interval of length 27, The operator F) has a natural extension to
Dy. It may be thought of, in a natural way, as a conditional expectation with respect
to the finitely-additive complex measure 2'(z)dz. In a recent paper, Coifman, Jones and
Semmes [CJS] pointed out that this conditional expectation operator has many of the
same properties as the conditional expectation with respect to a positive measure. They
outlined a proof of the corresponding Littlewood-Paley theorem which made use of a
Carleson measure argument, and used the Littlewood-Paley theorem to give a new proof

of the L?-boundedness of Cauchy integrals along chord-arc curves.

In this note we establish a general theory of martingales with respect to complex

measures. In our case, the complex measures are defined and o-additive on a o-algebra
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of sets F, and satisfy a natural condition with respect to the associated family of sub-o-
algebras F;. This condition, which generalizes the chord-arc condition for curves, is enough
to allow us to prove a number of classical theorems about martingales, but in the complex
setting. In particular, we establish, as the main goal of this paper, a Littlewood-Paley
theorem. Carleson measure techniques are not available in this context; in their place, we
use adaptations of certain methods which can be found, for example, in Garsia’s book [G].

To prove the weak type (1, 1) estimate we use a variation of Gundy’s lemma.

Thanks are due to Peter Dodds, Miloslav Jifina and Alan McIntosh, who contributed

to our understanding of a number of aspects of this topic.

1. Conditional expectations with respect to complex measures

Throughout this note we shall work with a fixed complex measure space (2, F,dv) and a

sequence of o-algebras

FCFC...CF.,C...CF
such that
(i) Use, Fn generates F;

(ii) VR e ZT = {1,2,...n ...}, VF € F, there exists{Uj} C F, such that

FCUUJ'.

As is well known, there exists a function ¢ € M(F), the class of the F-measurable
functions, and ¥, € M(F,) such that

[ = |n| =1,
dv = ¢|dv|, |dva| = ¥ndv,

where dv, = dyjz,, and |dv| and |dv,| are the total variation measures associated to dv

and dv,, respectively.
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By the Radon-Nikodym theorem, there is a fuﬁction fn € M(Fy,) such that |dv,| =
tn|dv|n. The function p, is Fy,-measurable and at most 1. We assume throughout the

remainder of the paper that the following condition holds: there is a constant Cy such

1
that, if p, = —, then

n

llpalleo < Co < 00,  Vn. ’ (1)

This condition underlies the definition of conditional expectation, and ensures the validity
of the basic results in Lemma 2. Notice that we have the relationship |dv|, = pn|dva|,

where p,, satisfies (1).

The following lemma guarantees the existence of conditional expectations with respect

to complex measures.

Lemma 1. Assume that condition (1) holds. Let f € L*(|dv|). Then for every n € Z7,

there exists an essentially unique function f,; which is F,-measurable, such that

Lh@:LMu

for all sets A € F,.

Proof. Denote by E, the conditional expectation operator with respect to the mea-

sure |dv|,. Then

/A fdv = /A foldv] = [A Eo(f)ldv]
- / Bu(F)ldv)n = / o ()] dval
A A
- / b B ) = / BrpnEn(f)dv.
A A
Let
fn = ¢nann(¢f)7

which is a function in M (F,). It is routine to check that f, is essentially unique modulo

the space of null, F,-measurable functions. 0O
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Definition 1. (Conditional Expectation) The function f, in Lemma 1 is called the
conditional ezpectation of f relative to F,, and is denoted by E,f or E(f|F,).

Lemma 2. The conditional expectation operator E, has the following basic properties:
(D) En(f) = Ea($ )/ En(9);
(ii) E,, is linear;

(iii) VA € F,
/ \Eu(F)] 1dv] < Co / £ o]
A A

where Cy is the constant appearing in condition (1);

@) [|IEa(Hllp < Collfllpy 1< p<oo;

(v) if f € L} (|dv]), g € M(Fn), and gf € LM(|dv]), then Bn(gf) = 9Ba(f);
(vi) En(1)=1;

(vii) m < n implies E(Enf) = Enf.

Proof. (i) By the calculation in Lemma 1 we need only verify that

L
En()

/Az/;|du|=/Adu=_/Adyn=/Ai|dyn[

1 1
= —dunz/ dv|.
/x;"»bnpnl l Ad)npnl l

1
Ynpr

'l/)npn =

In fact, for A € F,,,

Therefore

En($) =

(ii) This is a consequence of (i).
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(iii) For A € Fo,

J 1Bl = [ lpunBu )l ]

A A
< Co [ xalBatwh) Iav]
= Co [ 1En(xawh)l lav
<C dv|,
<G [ 1711

since the operators E, are contractions on L'(|dv|).

(V) IE1<p<oo,

[ 1Bl = [1ontnBatwlPlas
<t [1B.h1av)
<z [1rplas,

since the operators E,, are contractions on L?(|dv|), 1< p < co.

The case p = oo is also a consequence of (i) and the corresponding property of E,.

(v) If g € M(F,), then

En(gf) = ¢nPnEn(¢gf) = g"aannEn("l’f) = gEn(f)

(vi) This is a consequence of (i).

(vii) Let A € F,, C Fpn. Then

/A En(f)dv = /A fdv = /A E.(fdv = /A En(Enf)dv.

From the uniqueness we conclude that Enf = En(E,f). O
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Lemma 3. The following conditions are equivalent.

1° “pnlloo < CO’ Vn;

2° vp S [1,00], ”Enf“}’ S COHf”IHV”’Vf € L,

3° 3 po€ [1700] such that ”Enf”po < CO”f”pm Vn, Vf € LPe.

Proof. The proof of Lemma 2 shows that 1° = 2°, while it is obvious that 2° = 3°.
We proceed to prove that 3° = 1°. If pg < 400, assumption 3° means that

[1eariBatsyeiani <cge [ il vi e o
In particular, if f =g, g€ LP° N M(F,), we have
[1eapelatan < g [laliant, v e 1o 0 Mz
This implies that
[loalleo < Co.
If py = oo, replace f by g, where g € L™ N M(F,), in the equality

llpnEa(¥)loo < Collfloo-

It follows that
”Png”oo < Collg”ooa Vg € L™ nM(fn)7

and so ||pn]lee < Co. O

Lemma 4. Let
E*(f)= sup [En ()]

Then E* is of strong-type (p,p), 1 < p < 0o, and of weak-type (1,1).

Proof. This is a consequence of the formula
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and the corresponding result for standard martingales. 0O

As in the standard case, if a sequence {g,}32, has the properties g, € M(F,) and
En(gn) = gm, m <n, then we call it a martingale.

2. Littlewood-Paley theory

Denote by L} the space of functions in L?(|dv|) for which Eo(f) = 0. If f € L§(|dv]), we
define the square function of f to be

S(f) = \1 > 1Enf = EnafP.

Theorem. If1 < p < o0, there is a constant Cp such that

1511, < Coll 1l

for all f € Li(|dv|). There is a constant Cy such that

dvi(fa : 57 > 3) < Ll

for all f € Li(]dv]).

Remarks on the proof. Among the obstacles to using standard methods to prove
the theorem is the fact that E, is no longer self-adjoint on L%(|dv|); so we do not have
orthogonality between the various (B, — E,_1)’s. More precisely, the following is no longer

true:

[(Ba = Boe)f B = B v =0 (m £ 1),

In proving the theorem, we decompose the difference operator E,, — E,_; into two
parts: the estimate on the first part reduces to the standard case; the other brings to mind
the kind of integral that appears in Carleson measure arguments. We deal with it by using

techniques similar to those in Garsia’s book [G].
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Proof of the case 2 <p < oo

For k € N, write

k
Sk(f) = J D Bnf — Boa fI2.

n=1

Substitute a = p/2, p = (Sk/Sk—1)? in the following inequality:

p*—1<a(p—-1)p*"Y, a>1, p>1

We have n
[s:0=3 [stn -2
k=1
<2y / SP72(S2 — 52_,).
k=1
Let

= ST — 5272,
We then have that

n k
[sun<EY> [aesi-si

k=1l=1

—25°>" foust-st)

I=1 k=l
n n
14
=y / 6> 1ALF12),
=1 k=l
where we have written Arf = Epf — Er—1 f. Using the decomposition

_ _ Bl - Eea(#f)  Ee@) - Eea(¥) 5
Bef = B B®) BB )

we see that the right side of (3) is at most

> [0 IBwHE+OY [ 03 1A P
=1 k=l =1 k=l

=CIL +CIL

2)

3)

where we have used the fact that iEn(¢)[‘1 = |pa| £ Cy a.e., and Akg denotes Erg —

Ek—1§~
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The estimate of Iy is standard (see [G, pp. 28-30]):

n=Y [6B(Y BuwnP)
I=1 k=l

=3 [ BB - BrapP)
I=1 (4)

<sY (B whP =4 [ 2@ @y
> /e /

<o [ spri([ @ wnyyh.
To estimate I, set

Gn = SuplgkgniEk(¢f)lz, G2=G_1=Go=0
Tp = Gn - Gn_l,To =T = 0.

Then 7, is F,-measurable and 7, > 0. Therefore

n n k-1
L < }; / o,E,[; AP S 7+ Gia)]

g=1-1
k—1

=Z/91E1(Z|Ak¢'|2 > )
I=1 k=1

j=l-1

+ Z/&El(z |Aky)? - Gizz)
k=1

=1
=Jy + J,

where

Jy = ;/91G1—2El(;|A¢‘2)

= i/91G1_2E1(|En¢ - El—l¢l2)
=1 (5)
<4 [ oE @)y

=1

<o( [ ([ Ewpry,

and
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Jy = i/%ﬁh( "2‘: Tj 2”: |Akep[?)
I=1

j=l-1  k=j+1

=Z/91 i: Ei(r; Y 1Ak,
=1

j=l-1 k=j+1

Since j + 1 > [, we have

n n—1 n
Ji= 2/91 > ElEial(r Y 1Bay)
I=1

j=l-1 k=j+1
n n—1 n
= /91 Z Ez(TjEj_H( Z |AL7M2)
I=1 j=l-1 k=j+1
n n—1 . " " .
=% [0 Y Btriia(Buw - Ev?)
=1 j=l—1
n n—1 . "
=1 j=l—1
n n—1
<4y / by, T
=1 j=1—1

S4i/€"Gn_l.

=1
<4 [ s (B @)’
S4(/52)@_2)/?(/E*(¢f)p)2/P~

(6)

By combining (4), (5) and (6) with the fact that the maximal function operator E*

is bounded on L?(|dv|), we conclude that

(/35)1/1' Scp(/lflp)l/p

for some constant C), independent of f. This finishes the proof for the case 2 < p < co.
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Proof for the case 1<p <2

Since S is a sub-linear operator, it will suffice to show that S is of weak-type (1,1). Then
we use the Marcinkiewicz interpolation theorem. We shall use a variant of Gundy’s Lemma

appropriate to the present context.

Lemma 5. Let A > 0, f € L*(|dv|). Then there exist g,H,h,k € L'(|dv|) such that
f=g+H, |H =h+kand

. c
(i) ldv|({z : supp | Eng(2)] > 03) < ¢ [Ifll, gl < CIIfIl,
(i) oy 1Bah = Enshlly < Clifl, in particular ||h]ly < ClIfll,

(i) [klloo < CA, [lKll2 < ClIf 12

Temporarily accepting Lemma 5, let us prove the weak-type (1, 1) inequality for S.

In the proof, we use the same letter C to denote constants that may alter from line to line.

By using the sub-linearity of S and the decomposition (3), we have

5(f) < 5(9) + S(H)

< S(g)+ COJ DB H)? + Cg\] D 1Bt | Baa (pH)?

n=1 n=1

< S(g) + CoS1 + C3Ss.

Now
S < \ > 18wy Ena(JH|)?
n=1
n=1 n=1
= Tl + T27
say. '

S(f) < S(g) + CoS1 + C3 Ty + C3 T
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where Cj is the constant in condition (1). Since Cp > 1
{z:8(f)>4Ci Y {z: S(g) >A}U{z:S5 > AU
U{z: Ty > U{z:T> > A}
Now
{z:8(g) > A} {z: sup |Eng(z)| > 0}
So, by Lemma 5(i),

jdv({z : S(9) > X)) < SIflh-

Since S is a standard square function associated to the standard martingale En(Q/JH ), we

have

iz 51> 3D < Slw il < Sl

To handle T3, refer to the estimate of I in the proof of the case 2 < p < oco. This shows
that

[zans<c [15r<ox [ <o
On the other hand
/T22|du1 > Xldv|({z: Ty > A}),

so we get the appropriate weak-type (1, 1) estimate for Ts.

Now look at Tj. Notice that

O A Era(h)}oz,

k=1

is a martingale in the standard sense, and Tj is just the corresponding Littlewood-Paley

S-function. Therefore, by the standard weak-type (1, 1) inequality ([G, p. 58])

ldv|({z: Ty > A}) < %/sup|ZAk¢.Ek_1(h)|
n k=1
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C n 5 k-1 .
=5 s:p|§Ak¢.;A,h|

C n—1 . n .
=3 suplz Ak Z Ary
? =1 k=i+1
c n—1 . . .
=5 [ sup| )] Aih(Ent — Ep)|
ks =1

C n—1 .
< X/S:pz |Arh]

=1

< Sifih

by Lemma 5(iii). Now we conclude that

jdvl({z : () > 4C0A}) < Sl

Our last job is to prove the variant of Gundy’s Lemma (Lemma 5). We shall use the

following concept:

Definition 2. Let r : @ — ZT U {oo}. Then if {z : r(z) = n} € Fp,Vn, we call r(z)
a stopping time. By definition, Foo = F.

Lemma 6. If r(z) is a stopping time, then

/ ey (@)] ldv] < G / (@) 1dv]
Q Q
where foo(z) = f().

Proof.
/ (=) k; /{
<
- ; At:r(x)zk} |f(y)l " ~/{x:r(z)=oo} If(y)l
=Co/[f| |dv],

by using Lemma 2(iii). O

)l vl + [ 1£@)] ldv]
} }

zir(z)=k z:r(z)=co
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Lemma 7. Ifr(z) is a stopping time, then f3(z) = Frar(z)(2) is a martingale; in fact we

have fﬁ, = En(fr(z))'

We omit the proof of Lemma 7 since there is no difference from the standard case.

The only issue concerns measurability. (See, for example, [L]).
Lemma 8. If f € LP(|dv]), 1 < p < oo, then E,f — f in L?(|dv|).

Proof. As in the standard case, Ve > 0, there exist n € Z*, and g, such that
gn € M(F,) and ||f — gullp < € (for details, see [EG, Chapter 5] for example). Then

Enf—f = En(f —gn) + (Bmgn — gn) — (f = gn)-
Since [|En(f — gn)lls < Collf — gal] £ Coe, Vm, and if m > n, Engn — gn = 0, then
i sup || B f = fllp < i sup || B (f = ga)llp + Ilf = gnllp < (a+ Co)e.
This establishes the desired convergence. O

Now we are in a position to prove Lemma 5.

Proof of Lemma 5. Define r(z) = inf{n : |fu(z)] > A}, with the convention that

the infimum of the empty set is taken to be oco. It is a stopping time, since
{z:r(e) =n} ={z:|A@)],...;|[facr(2)| S X [fa(2)] > A} € Frn.
Next write |fn(z)| = 3 5oy $x(z), where ¢r = |f&| — |fe-1], fo =0. Set
en(2) = bn(T)X (yir(y)=n}(2)-

Obviously €, > 0. Define a new stopping time s by

s(z) =inf{n: ZEk(€k+1)($) > Ak
k=0

like r(z), it too is a stopping time.
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Now set t(z) = r(z) A s(z). We wish to prove that

jdvl({e : 42) # o0}) < SIFlh.
First of all ,
{z:t(z) # oo} C{z:r(x) # o0} U {x: s(z) # oo},

and

{o: (@) # 00} = {a : sup fale)| > X}

C
ldv|({z : r(2) = co}) < +IFllx
by the maximal martingale Lemma 4. On the other hand
{z:3(z) # 0o} C {z: EE‘k(eHl)(ac) > A}
k=0

and

/ZEk(€k+1)—Z/5k+l Z/ [firal = 1fxl

{z:r(z)=k+1}

g/{; ir(z)=k+1} lfk+1| = / Ifr("‘)(m)i ~<— CO”f”l
which gives
(e o(a) # 00)) < Sl

From the relation (6) we get

jdvl({z : e # 0o}) < Slh.

Let g(z) = f(z)~ fun)(z), H(z) = fun)(x), 50 that Bng = fu—f4 where f}

by Lemma 7, and
{z: s?zp |Eng(z)] # 0} C {z: () # o}

From (7) it follows that property (i) of Lemma 5 holds. Notice that

|fﬁl = | fani(@)(z) = Z(% + 5J)X{y s(¥)25}
j=1

(6)

(M

= fn/\t(z) ($)7
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where v; = ¢jX{y:r(y)>j}' Set
ha(z) = Y (&5 = Bjma(e))Xtwstyziy = O %5
j=1 =
and

kn(z) = Z('rﬁ Ei—1(e))X (o) 25}

Obviously, hy, + kn, = |f}]. Since

s < / & + / Bi_i(e;)
/ ; ’ z,: {ys@)25) ; szt

<2 . <2 ;
N Z/{ys(y)»}s]_ ;/EJ
< 22/ 1f51 < 2o 1l

{z:r(z)=3}

from Lemma, 5, we conclude that there exists h € L' such that ||2]|; < C||f]|: and h, — &
in L*(|dv|). Now from Lemma 8 we also have that limy—co |f}] = limn—co | En fuz)| = |fe(o)
in L'(|dv]); hence there exists k € L*(|dv|) such that ||k||; < C||f|l; and k, — & in L.

It remains to prove that ||k|lcc < CA. To do this, we shall treat the following two

inequalities separately:
(a) HZ;l:l 7jX{y:s(y)Zj}“oo <Cx

(,3) H 2?:1 Ej—l(sj)X{y:s(y)Zj}ll <Cx

As to (a), we have

I D (@)X 2y (@] = | D 5@ X (yir()> ) X iro ()23 (7))

j=1 =1
nAr(z)—1As(z)

> i@ <A

=1

from the definition of ¢; and r{z).



As to (8),

3

0<

from the definition of s(z).

This completes the proof of Lemma 5. The proof of the theorem is also complete.
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